Skip to main content

oanda-bot is a python library for automated trading bot with oanda rest api on Python 3.6 and above.

Project description

oanda-bot

PyPI License: MIT codecov Build Status PyPI - Python Version Downloads

oanda-bot is a python library for automated trading bot with oanda rest api on Python 3.6 and above.

Installation

$ pip install oanda-bot

Usage

basic run

from oanda_bot import Bot

class MyBot(Bot):
    def strategy(self):
        fast_ma = self.sma(period=5)
        slow_ma = self.sma(period=25)
        # golden cross
        self.sell_exit = self.buy_entry = (fast_ma > slow_ma) & (
            fast_ma.shift() <= slow_ma.shift()
        )
        # dead cross
        self.buy_exit = self.sell_entry = (fast_ma < slow_ma) & (
            fast_ma.shift() >= slow_ma.shift()
        )

MyBot(
    account_id='<your practice account id>',
    access_token='<your practice access token>',
).run()

basic backtest

from oanda_bot import Bot

class MyBot(Bot):
    def strategy(self):
        fast_ma = self.sma(period=5)
        slow_ma = self.sma(period=25)
        # golden cross
        self.sell_exit = self.buy_entry = (fast_ma > slow_ma) & (
            fast_ma.shift() <= slow_ma.shift()
        )
        # dead cross
        self.buy_exit = self.sell_entry = (fast_ma < slow_ma) & (
            fast_ma.shift() >= slow_ma.shift()
        )

MyBot(
    account_id='<your practice account id>',
    access_token='<your practice access token>',
).backtest()

basic report

from oanda_bot import Bot

Bot(
    account_id='<your practice account id>',
    access_token='<your practice access token>',
).report()

advanced run

from oanda_bot import Bot

class MyBot(Bot):
    def strategy(self):
        rsi = self.rsi(period=10)
        ema = self.ema(period=20)
        lower = ema - (ema * 0.001)
        upper = ema + (ema * 0.001)
        self.buy_entry = (rsi < 30) & (self.df.C < lower)
        self.sell_entry = (rsi > 70) & (self.df.C > upper)
        self.sell_exit = ema > self.df.C
        self.buy_exit = ema < self.df.C
        self.units = 1000 # currency unit (default=10000)
        self.take_profit = 50 # take profit pips (default=0 take profit none)
        self.stop_loss = 20 # stop loss pips (default=0 stop loss none)

MyBot(
    account_id='<your practice account id>',
    access_token='<your practice access token>',
    # trading environment (default=practice)
    environment='practice',
    # trading currency (default=EUR_USD)
    instrument='USD_JPY',
    # 1 minute candlesticks (default=D)
    granularity='M1',
    # trading time (default=Bot.SUMMER_TIME)
    trading_time=Bot.WINTER_TIME,
    # Slack notification when an error occurs
    slack_webhook_url='<your slack webhook url>',
    # Line notification when an error occurs
    line_notify_token='<your line notify token>',
    # Discord notification when an error occurs
    discord_webhook_url='<your discord webhook url>',
).run()

advanced backtest

from oanda_bot import Bot

class MyBot(Bot):
    def strategy(self):
        rsi = self.rsi(period=10)
        ema = self.ema(period=20)
        lower = ema - (ema * 0.001)
        upper = ema + (ema * 0.001)
        self.buy_entry = (rsi < 30) & (self.df.C < lower)
        self.sell_entry = (rsi > 70) & (self.df.C > upper)
        self.sell_exit = ema > self.df.C
        self.buy_exit = ema < self.df.C
        self.units = 1000 # currency unit (default=10000)
        self.take_profit = 50 # take profit pips (default=0 take profit none)
        self.stop_loss = 20 # stop loss pips (default=0 stop loss none)

MyBot(
    account_id='<your practice account id>',
    access_token='<your practice access token>',
    instrument='USD_JPY',
    granularity='S15', # 15 second candlestick
).backtest(from_date="2020-7-7", to_date="2020-7-13", filename="backtest.png")
total profit        3910.000
total trades         374.000
win rate              59.091
profit factor          1.115
maximum drawdown    4220.000
recovery factor        0.927
riskreward ratio       0.717
sharpe ratio           0.039
average return         9.787
stop loss              0.000
take profit            0.000

backtest.png

advanced report

from oanda_bot import Bot

Bot(
    account_id='<your practice account id>',
    access_token='<your practice access token>',
    instrument='USD_JPY',
    granularity='S15', # 15 second candlestick
).report(filename="report.png", days=-7) # from 7 days ago to now
total profit        -4960.000
total trades          447.000
win rate               59.284
profit factor          -0.887
maximum drawdown    10541.637
recovery factor        -0.471
riskreward ratio       -0.609
sharpe ratio           -0.043
average return        -10.319

report.png

live run

from oanda_bot import Bot

class MyBot(Bot):
    def atr(self, *, period: int = 14, price: str = "C"):
        a = (self.df.H - self.df.L).abs()
        b = (self.df.H - self.df[price].shift()).abs()
        c = (self.df.L - self.df[price].shift()).abs()

        df = pd.concat([a, b, c], axis=1).max(axis=1)
        return df.ewm(span=period).mean()

    def strategy(self):
        rsi = self.rsi(period=10)
        ema = self.ema(period=20)
        atr = self.atr(period=20)
        lower = ema - atr
        upper = ema + atr
        self.buy_entry = (rsi < 30) & (self.df.C < lower)
        self.sell_entry = (rsi > 70) & (self.df.C > upper)
        self.sell_exit = ema > self.df.C
        self.buy_exit = ema < self.df.C
        self.units = 1000

MyBot(
    account_id='<your live account id>',
    access_token='<your live access token>',
    environment='live',
    instrument='EUR_GBP',
    granularity='H12', # 12 hour candlesticks
    trading_time=Bot.WINTER_TIME,
    slack_webhook_url='<your slack webhook url>',
).run()

Supported indicators

  • Simple Moving Average 'sma'
  • Exponential Moving Average 'ema'
  • Moving Average Convergence Divergence 'macd'
  • Relative Strenght Index 'rsi'
  • Bollinger Bands 'bbands'
  • Market Momentum 'mom'
  • Stochastic Oscillator 'stoch'
  • Awesome Oscillator 'ao'

Getting started

For help getting started with OANDA REST API, view our online documentation.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oanda-bot-0.1.2.tar.gz (10.7 kB view details)

Uploaded Source

Built Distribution

oanda_bot-0.1.2-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file oanda-bot-0.1.2.tar.gz.

File metadata

  • Download URL: oanda-bot-0.1.2.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.2

File hashes

Hashes for oanda-bot-0.1.2.tar.gz
Algorithm Hash digest
SHA256 fd33ceec081e282691bfb9a09c3ec41a3487095b6c715bd34e6e4026d5f4d188
MD5 4f96f583ccf9505801099769aaffdab3
BLAKE2b-256 e0a4c823f4e267dd328fa110f775a390b46bfe104c29d9f9c68d81397355418d

See more details on using hashes here.

File details

Details for the file oanda_bot-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: oanda_bot-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.2

File hashes

Hashes for oanda_bot-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 10969f405b4896741a70f1a3708cf2f8b6b29b0221516a4789b31b4993c2318e
MD5 8cb54422df71483dfb790373474fff43
BLAKE2b-256 b7621b033e13b49eb85103c5459521a1f724a4d8757e997f7829b5c8f0bd68f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page