Skip to main content

A custom wrapper object around dict that allows attribute-style access to dictionary items and support for nested JSON data.

Project description

objdict-bf

objdict-bf is a Python module that provides a wrapper class for conveniently manipulating dictionaries or dict-based JSON nested structures using attribute-like syntax. It is intended mostly to ease manipulation of JSON data, web requests responses, configuration files, dynamic prototyping...

Features

  • Attribute-style access to dictionary items (e.g., obj.key instead of obj['key']).
  • Synchronization with the original dictionary if passed at instantiation.
  • Utility methods for recursive conversion of nested structures to and from objdict and dict.
  • JSON serialization and deserialization methods for both strings and files with optional jsonpickle support.
  • optional object-like behavior, by auto-passing the instance as 'self' to callable attributes with 'self' in their signature.

Installation

pip install objdict-bf

Usage

Here's an example of how to use the objdict wrapper:

from objdict_bf import objdict

# Create an objdict with some initial data
data = objdict(
    name='John',
    age=30,
    location='New York'
)

#Or synchronize with an existing dict
d={'name': 'John', 'age': 30, 'location': 'New York'}
data = objdict(d)

# Access data using attribute-style access
print(data.name)  # Output: John
print(data.age)   # Output: 30

# Modify data
data.age = 31

#Changes are reflected on the original dict
print(d['age']) #Ouput: 31

#Support for nested structures involving lists
d={
    'profile':{
        'name':'John',
        'hobbies':[
            {'type':'sport','title':'tennis'},
            {'type':'music','title':'guitar playing'}
        ]
    }
}
data = objdict(d)

print(data.profile.hobbies[1].title) #Output: guitar playing

#Conversion of dict items to their objdict version is automatic.
#The objdict being essentially a wrapper interface on the initial dict,  
#this conversion is reflected in the initial dict content as well

print(isinstance(data.profile.hobbies[1],objdict)) #Output: True
print(isinstance(d['profile']['hobbies'][1],objdict)) #Output: True

#to_dict returns the underlying dict, converting recursively all objdicts found in the nested structure back to dicts
print(d is data.to_dict()) #Ouptut: True
print(isinstance(d['profile']['hobbies'][1], dict) #Output: True 

# Serialize to JSON string
json_string = data.dumps()

#dump to a JSON file
data.dump("my_json_file.json")
#or
data.dump("my_json_file.json",use_jsonpickle=True)

#make some more changes
data.email="dummy.email@gmail.com

#the reference to the file and jsonpickle usage preference from the last dump is kept in the objdict instance so you don't have to pass them again
data.dump()

# Deserialize from JSON string (creates a new instance)
data = objdict.loads(json_string)
#or
data = objdict.loads(json_string,use_jsonpickle=True)

# Deserialize from a JSON file (new instance keeping reference to the json file)
data = objdict.load("my_json_file.json")
#or
data = objdict.load("my_json_file.json",use_jsonpickle=True)

#update data
data.email="dummy.email@gmail.com"
data.user="dummy_username"

#dump changes to 'my_json_file.json' 
data.dump()

#Using it as a mocked object with context aware methods thanks to the _auto_self parameter which automatically passes the objdict instance as 'self' to callable attributes having 'self' in their signature

obj=objdict(_auto_self=True)
obj.a=2

#create a function with 'self' as first parameter (any other name won't receive the instance)
def add_to_a(self,b):
    self.a+=b

#attach the function as attribute
obj.add_to_a=add_to_a
obj.add_to_a(3)
print(obj.a) #output 5

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

objdict_bf-0.1.10.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

objdict_bf-0.1.10-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file objdict_bf-0.1.10.tar.gz.

File metadata

  • Download URL: objdict_bf-0.1.10.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for objdict_bf-0.1.10.tar.gz
Algorithm Hash digest
SHA256 4ee98a241211e63c265d490de4053c689fd1a290b429704e70a86eb706d1cb48
MD5 42702114a2ffd6db7f23b9def4f478b9
BLAKE2b-256 270ca4041e4eefd0d9a3877562f034e0508db91553ad1f196dcff2cc326fc700

See more details on using hashes here.

File details

Details for the file objdict_bf-0.1.10-py3-none-any.whl.

File metadata

  • Download URL: objdict_bf-0.1.10-py3-none-any.whl
  • Upload date:
  • Size: 7.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for objdict_bf-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 0b5501008efa7e18dd4e72ec6e4559e53b5859827aca3e80eafbbdc197a5266b
MD5 619bf9d0f35d514d1f5e8c265af0f601
BLAKE2b-256 35d0d02481bae94b66b19598f840570ed32e35a34a4d0da9e9ae999d3db4a02d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page