Skip to main content

Command line tool for Image and Video Quality Assessment including MDTVSFA, FAST-VQA, VMAF, MUSIQ and more...

Project description

Introduction

It is a tool for convenient use of objective quality metrics via the command line. You can use it to run calculations on whole datasets via GPU or CPU and track the results.

There is support of No Reference (NR) and Full Reference (FR) image and video quality (I/VQA) metrics with the possibility of using image metrics on videos framewise with averaging.

Written on Python and PyTorch. 52 methods have been implemented.

Most implementations are based on IQA-PyTorch and PIQ. Some are taken from the repositories of the authors (see List of available models). The VMAF implementation was taken from FFMPEG.

See Homepage for more information.

Dependencies

  • Python: >=3.10,<3.11
  • ffmpeg (build with libvmaf for VMAF)
  • decord (you can build decord with GPU to use NVDEC)
  • CUDA: >= 10.2 (OPTIONAL if use GPU)
  • CuPy (OPTIONAL if use SI, CF, TI with GPU)

List of available models

Image models

NR IQA

Paper Link Method Code
pdf SPAQ Baseline (spaq-bl) PyTorch
pdf SPAQ MT-A (spaq-mta) PyTorch
pdf SPAQ MT-S (spaq-mts) PyTorch
pdf HyperIQA (hyperiqa) PyTorch
pdf CNNIQA (cnniqa) PyTorch
arXiv Linearity (linearity) PyTorch
arXiv PaQ2PiQ (paq2piq) PyTorch
arXiv CLIPIQA (clipiqa) PyTorch
arXiv CLIPIQA+ (clipiqa+) PyTorch
arXiv KonCept512 (koncept512) PyTorch
arXiv MANIQA (maniqa) PyTorch
arXiv TReS (tres) PyTorch
arXiv MUSIQ (musiq) PyTorch
arXiv PI (pi) PyTorch
arXiv DBCNN (dbcnn) PyTorch
arXiv NIMA (nima) PyTorch
arXiv NRQM (nrqm) PyTorch
pdf ILNIQE (ilniqe) PyTorch
pdf BRISQUE (brisque) PyTorch
pdf NIQE (niqe) PyTorch
arXiv UNIQUE (unique) PyTorch
arXiv TOPIQ (topiq_nr) PyTorch
ITU Spatial Information (si) self-made
ResearchGate Colourfulness (cf) self-made

FR IQA

PSNR, SSIM, MS-SSIM, CW-SSIM are computed on Y channel in YUV (YCbCr) color space.

Paper Link Method Code
arXiv TOPIQ (topiq_fr) PyTorch
arXiv AHIQ (ahiq) PyTorch
arXiv PieAPP (pieapp) PyTorch
arXiv LPIPS (lpips) PyTorch
arXiv DISTS (dists) PyTorch
arXiv CKDN1 (ckdn) PyTorch
pdf FSIM (fsim) PyTorch
wiki SSIM (ssim) PyTorch
pdf MS-SSIM (ms_ssim) PyTorch
pdf CW-SSIM (cw_ssim) PyTorch
arXiv PSNR (psnr) PyTorch
pdf VIF (vif) PyTorch
arXiv GMSD (gmsd) PyTorch
pdf NLPD (nlpd) PyTorch
IEEE Xplore VSI (vsi) PyTorch
pdf MAD (mad) PyTorch
IEEE Xplore SR-SIM (srsim) PyTorch
IEEE Xplore DSS (dss) PyTorch
arXiv HaarPSI (haarpsi) PyTorch
arXiv MDSI (mdsi) PyTorch
pdf MS-GMSD (msgmsd) PyTorch

[1] This method use distorted image as reference. Please refer to the paper for details.

Feature Extractors

Paper Link Method Code
arXiv InceptionV3 (inception_v3) PyTorch

Video models

NR VQA

Paper Link Method Code
arXiv MDTVSFA (mdtvsfa) PyTorch
arXiv FAST-VQA (FAST-VQA) PyTorch
arXiv FasterVQA (FasterVQA) PyTorch
arXiv DOVER (dover) PyTorch
ITU Temporal Information (ti) self-made

FR VQA

Paper Link Method Code
wiki VMAF (vmaf) FFMPEG VMAF

License

This project is licensed under the MIT License. However, it also includes code distributed under the BSD+Patent license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

objective_metrics-1.2.2.tar.gz (87.4 kB view details)

Uploaded Source

Built Distribution

objective_metrics-1.2.2-py3-none-any.whl (158.3 kB view details)

Uploaded Python 3

File details

Details for the file objective_metrics-1.2.2.tar.gz.

File metadata

  • Download URL: objective_metrics-1.2.2.tar.gz
  • Upload date:
  • Size: 87.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for objective_metrics-1.2.2.tar.gz
Algorithm Hash digest
SHA256 3eaea85ad676dd1c7ddcb0c48b0892cf7b5ec7b19fc272839370940114f6e344
MD5 7986220a3ff80c85617e1e5364e63536
BLAKE2b-256 9236e2b682ac86e80a30d8bc9d2273e16041115e20cbb0abf6a7620387de7013

See more details on using hashes here.

File details

Details for the file objective_metrics-1.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for objective_metrics-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 fb09917cf073d8dd197702687b6b0938f158b61db544a7e92ab7014165b9f95d
MD5 a3e92e51f3c5f48520eb0550905e3661
BLAKE2b-256 97a61f374e819ff3d1f99d61bb40c41c4cc09f3e3859d8a9ab5a34845603c7d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page