Command line tool for Image and Video Quality Assessment including MDTVSFA, FAST-VQA, VMAF, MUSIQ and more...
Project description
Introduction
It is a tool for convenient use of objective quality metrics via the command line. You can use it to run calculations on whole datasets via GPU or CPU and track the results.
There is support of No Reference (NR) and Full Reference (FR) image and video quality (I/VQA) metrics with the possibility of using image metrics on videos framewise with averaging.
Written on Python and PyTorch. 52 methods have been implemented.
Most implementations are based on IQA-PyTorch and PIQ. Some are taken from the repositories of the authors (see List of available models). The VMAF implementation was taken from FFMPEG.
See Homepage for more information.
Dependencies
- Python: >=3.10,<3.11
- ffmpeg (build with libvmaf for VMAF)
- decord (you can build decord with GPU to use NVDEC)
- CUDA: >= 10.2 (OPTIONAL if use GPU)
- CuPy (OPTIONAL if use SI, CF, TI with GPU)
List of available models
Image models
NR IQA
Paper Link | Method | Code |
---|---|---|
SPAQ Baseline (spaq-bl) | PyTorch | |
SPAQ MT-A (spaq-mta) | PyTorch | |
SPAQ MT-S (spaq-mts) | PyTorch | |
HyperIQA (hyperiqa) | PyTorch | |
CNNIQA (cnniqa) | PyTorch | |
arXiv | Linearity (linearity) | PyTorch |
arXiv | PaQ2PiQ (paq2piq) | PyTorch |
arXiv | CLIPIQA (clipiqa) | PyTorch |
arXiv | CLIPIQA+ (clipiqa+) | PyTorch |
arXiv | KonCept512 (koncept512) | PyTorch |
arXiv | MANIQA (maniqa) | PyTorch |
arXiv | TReS (tres) | PyTorch |
arXiv | MUSIQ (musiq) | PyTorch |
arXiv | PI (pi) | PyTorch |
arXiv | DBCNN (dbcnn) | PyTorch |
arXiv | NIMA (nima) | PyTorch |
arXiv | NRQM (nrqm) | PyTorch |
ILNIQE (ilniqe) | PyTorch | |
BRISQUE (brisque) | PyTorch | |
NIQE (niqe) | PyTorch | |
arXiv | UNIQUE (unique) | PyTorch |
arXiv | TOPIQ (topiq_nr) | PyTorch |
ITU | Spatial Information (si) | self-made |
ResearchGate | Colourfulness (cf) | self-made |
FR IQA
PSNR, SSIM, MS-SSIM, CW-SSIM are computed on Y channel in YUV (YCbCr) color space.
Paper Link | Method | Code |
---|---|---|
arXiv | TOPIQ (topiq_fr) | PyTorch |
arXiv | AHIQ (ahiq) | PyTorch |
arXiv | PieAPP (pieapp) | PyTorch |
arXiv | LPIPS (lpips) | PyTorch |
arXiv | DISTS (dists) | PyTorch |
arXiv | CKDN1 (ckdn) | PyTorch |
FSIM (fsim) | PyTorch | |
wiki | SSIM (ssim) | PyTorch |
MS-SSIM (ms_ssim) | PyTorch | |
CW-SSIM (cw_ssim) | PyTorch | |
arXiv | PSNR (psnr) | PyTorch |
VIF (vif) | PyTorch | |
arXiv | GMSD (gmsd) | PyTorch |
NLPD (nlpd) | PyTorch | |
IEEE Xplore | VSI (vsi) | PyTorch |
MAD (mad) | PyTorch | |
IEEE Xplore | SR-SIM (srsim) | PyTorch |
IEEE Xplore | DSS (dss) | PyTorch |
arXiv | HaarPSI (haarpsi) | PyTorch |
arXiv | MDSI (mdsi) | PyTorch |
MS-GMSD (msgmsd) | PyTorch |
[1] This method use distorted image as reference. Please refer to the paper for details.
Feature Extractors
Paper Link | Method | Code |
---|---|---|
arXiv | InceptionV3 (inception_v3) | PyTorch |
Video models
NR VQA
Paper Link | Method | Code |
---|---|---|
arXiv | MDTVSFA (mdtvsfa) | PyTorch |
arXiv | FAST-VQA (FAST-VQA) | PyTorch |
arXiv | FasterVQA (FasterVQA) | PyTorch |
arXiv | DOVER (dover) | PyTorch |
ITU | Temporal Information (ti) | self-made |
FR VQA
Paper Link | Method | Code |
---|---|---|
wiki | VMAF (vmaf) | FFMPEG VMAF |
License
This project is licensed under the MIT License. However, it also includes code distributed under the BSD+Patent license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file objective_metrics-1.2.2.tar.gz
.
File metadata
- Download URL: objective_metrics-1.2.2.tar.gz
- Upload date:
- Size: 87.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3eaea85ad676dd1c7ddcb0c48b0892cf7b5ec7b19fc272839370940114f6e344 |
|
MD5 | 7986220a3ff80c85617e1e5364e63536 |
|
BLAKE2b-256 | 9236e2b682ac86e80a30d8bc9d2273e16041115e20cbb0abf6a7620387de7013 |
File details
Details for the file objective_metrics-1.2.2-py3-none-any.whl
.
File metadata
- Download URL: objective_metrics-1.2.2-py3-none-any.whl
- Upload date:
- Size: 158.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb09917cf073d8dd197702687b6b0938f158b61db544a7e92ab7014165b9f95d |
|
MD5 | a3e92e51f3c5f48520eb0550905e3661 |
|
BLAKE2b-256 | 97a61f374e819ff3d1f99d61bb40c41c4cc09f3e3859d8a9ab5a34845603c7d7 |