Skip to main content

Command line tool for Image and Video Quality Assessment including MDTVSFA, FAST-VQA, VMAF, MUSIQ and more...

Project description

Introduction

It is a tool for convenient use of objective quality metrics via the command line. You can use it to run calculations on whole datasets via GPU or CPU and track the results.

There is support of No Reference (NR) and Full Reference (FR) image and video quality (I/VQA) metrics with the possibility of using image metrics on videos framewise with averaging.

Written on Python and PyTorch. 52 methods have been implemented.

Most implementations are based on IQA-PyTorch and PIQ. Some are taken from the repositories of the authors (see List of available models). The VMAF implementation was taken from FFMPEG.

See Homepage for more information.

Dependencies

  • Python: >=3.10,<3.11
  • ffmpeg (build with libvmaf for VMAF)
  • decord (you can build decord with GPU to use NVDEC)
  • CUDA: >= 10.2 (OPTIONAL if use GPU)
  • CuPy (OPTIONAL if use SI, CF, TI with GPU)

List of available models

Image models

NR IQA

Paper Link Method Code
pdf SPAQ Baseline (spaq-bl) PyTorch
pdf SPAQ MT-A (spaq-mta) PyTorch
pdf SPAQ MT-S (spaq-mts) PyTorch
pdf HyperIQA (hyperiqa) PyTorch
pdf CNNIQA (cnniqa) PyTorch
arXiv Linearity (linearity) PyTorch
arXiv PaQ2PiQ (paq2piq) PyTorch
arXiv CLIPIQA (clipiqa) PyTorch
arXiv CLIPIQA+ (clipiqa+) PyTorch
arXiv KonCept512 (koncept512) PyTorch
arXiv MANIQA (maniqa) PyTorch
arXiv TReS (tres) PyTorch
arXiv MUSIQ (musiq) PyTorch
arXiv PI (pi) PyTorch
arXiv DBCNN (dbcnn) PyTorch
arXiv NIMA (nima) PyTorch
arXiv NRQM (nrqm) PyTorch
pdf ILNIQE (ilniqe) PyTorch
pdf BRISQUE (brisque) PyTorch
pdf NIQE (niqe) PyTorch
arXiv UNIQUE (unique) PyTorch
arXiv TOPIQ (topiq_nr) PyTorch
ITU Spatial Information (si) self-made
ResearchGate Colourfulness (cf) self-made

FR IQA

PSNR, SSIM, MS-SSIM, CW-SSIM are computed on Y channel in YUV (YCbCr) color space.

Paper Link Method Code
arXiv TOPIQ (topiq_fr) PyTorch
arXiv AHIQ (ahiq) PyTorch
arXiv PieAPP (pieapp) PyTorch
arXiv LPIPS (lpips) PyTorch
arXiv DISTS (dists) PyTorch
arXiv CKDN1 (ckdn) PyTorch
pdf FSIM (fsim) PyTorch
wiki SSIM (ssim) PyTorch
pdf MS-SSIM (ms_ssim) PyTorch
pdf CW-SSIM (cw_ssim) PyTorch
arXiv PSNR (psnr) PyTorch
pdf VIF (vif) PyTorch
arXiv GMSD (gmsd) PyTorch
pdf NLPD (nlpd) PyTorch
IEEE Xplore VSI (vsi) PyTorch
pdf MAD (mad) PyTorch
IEEE Xplore SR-SIM (srsim) PyTorch
IEEE Xplore DSS (dss) PyTorch
arXiv HaarPSI (haarpsi) PyTorch
arXiv MDSI (mdsi) PyTorch
pdf MS-GMSD (msgmsd) PyTorch

[1] This method use distorted image as reference. Please refer to the paper for details.

Feature Extractors

Paper Link Method Code
arXiv InceptionV3 (inception_v3) PyTorch

Video models

NR VQA

Paper Link Method Code
arXiv MDTVSFA (mdtvsfa) PyTorch
arXiv FAST-VQA (FAST-VQA) PyTorch
arXiv FasterVQA (FasterVQA) PyTorch
arXiv DOVER (dover) PyTorch
ITU Temporal Information (ti) self-made

FR VQA

Paper Link Method Code
wiki VMAF (vmaf) FFMPEG VMAF

License

This project is licensed under the MIT License. However, it also includes code distributed under the BSD+Patent license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

objective_metrics-1.2.2.tar.gz (87.4 kB view hashes)

Uploaded Source

Built Distribution

objective_metrics-1.2.2-py3-none-any.whl (158.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page