Skip to main content

Object Classifier

Project description

OBJECT CLASSIFIER

Clone this repository

  • for SSH
git clone git@github.com:1chimaruGin/Object-classifier.git
  • for https
https://github.com/1chimaruGin/Object-classifier.git

Requirements

pip install -U requirements.txt

Dataset

  • the dataset directory should be the following format.

# for example, dog vs cat classification
data/
    -train/
        dog/
            -*.jpg or *.png
        cat/
            -*.jpg or *.png
    -val/
        dog/
            -*.jpg or *.png
        cat/
            -*.jpg or *.png

Usage with Argparse

cd Object-classifier/objifier
  • Update number of classes and names in data.yaml

  • For training model(ResNet)

$ python main.py -m [mode: train] -opt [optimizer: (default='SGD')]  -epochs [epochs: (default=25)] 
  • For training model(EfficientNet)
$ python main.py -m [mode: train] -opt [optimizer]  -epochs [epochs] -backbone [backbone: efficientNet] -lvl [efficientNet level]
  • For prediction
$ python main.py -m [mode: predict] -im [input image] - backbone [backbone: ResNet or efficientNe] -lvl [efficientNet level]

Usage with YAML (via pip)

Create a YAML file as sample below:

  • For training [train.yaml]
nc: 10
# names: ['mantled_howler', 'patas_monkey', 'bald_uakari', 'japanese_macaque', 'pygmy_marmoset', 
#       'white_headed_capuchin', 'silvery_marmoset', 'common_squirrel_monkey', 'black_headed_night_monkey','nilgiri_langur' ]

names: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

backbone: 'efficientNet'

efftlvl: 0

optimizer: 'Adam'

mode: 'train'

epoch: 2

load: False

output: 'output'

dataset_path: null

  • For prediction [predict.yaml]
nc: 10
# names: ['mantled_howler', 'patas_monkey', 'bald_uakari', 'japanese_macaque', 'pygmy_marmoset', 
#       'white_headed_capuchin', 'silvery_marmoset', 'common_squirrel_monkey', 'black_headed_night_monkey','nilgiri_langur' ]

names: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

backbone: 'efficientNet'

efftlvl: 0

output: 'output'

image: 'baobao.jpg'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

objifier-0.1.1.tar.gz (22.0 kB view details)

Uploaded Source

Built Distribution

objifier-0.1.1-py3-none-any.whl (24.4 kB view details)

Uploaded Python 3

File details

Details for the file objifier-0.1.1.tar.gz.

File metadata

  • Download URL: objifier-0.1.1.tar.gz
  • Upload date:
  • Size: 22.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.2

File hashes

Hashes for objifier-0.1.1.tar.gz
Algorithm Hash digest
SHA256 5269c5a7d05cc899b73c1dbd59c45799817cac7c073d0f10ee9b117fd1cd640c
MD5 48fcf65cf81303abef4ba5b1df0844ce
BLAKE2b-256 40e3d3ec6677e0ad2d03e7171211ab5b9d867f48a78c2af80c131198018f77d7

See more details on using hashes here.

File details

Details for the file objifier-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: objifier-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 24.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.2

File hashes

Hashes for objifier-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e2e69804c0a833b4aa82f9c084ec328a5d176e9b61de754a10e53694eac61db3
MD5 dd7f57bcce814a93740dd851a7dcc536
BLAKE2b-256 0f9a7526aeac0d99b8bd5c4dd3d84b629c2beef731bef58bfeba0d9c0b7f6f94

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page