Object Classifier
Project description
OBJECT CLASSIFIER
Clone this repository
- for SSH
git clone git@github.com:1chimaruGin/Object-classifier.git
- for https
https://github.com/1chimaruGin/Object-classifier.git
Requirements
pip install -U requirements.txt
Dataset
- the dataset directory should be the following format.
# for example, dog vs cat classification
data/
-train/
dog/
-*.jpg or *.png
cat/
-*.jpg or *.png
-val/
dog/
-*.jpg or *.png
cat/
-*.jpg or *.png
Usage with Argparse
cd Object-classifier/objifier
-
Update number of classes and names in data.yaml
-
For training model(ResNet)
$ python main.py -m [mode: train] -opt [optimizer: (default='SGD')] -epochs [epochs: (default=25)]
- For training model(EfficientNet)
$ python main.py -m [mode: train] -opt [optimizer] -epochs [epochs] -backbone [backbone: efficientNet] -lvl [efficientNet level]
- For prediction
$ python main.py -m [mode: predict] -im [input image] - backbone [backbone: ResNet or efficientNe] -lvl [efficientNet level]
Usage with YAML (via pip)
Create a YAML file as sample below:
- For training [train.yaml]
nc: 10
# names: ['mantled_howler', 'patas_monkey', 'bald_uakari', 'japanese_macaque', 'pygmy_marmoset',
# 'white_headed_capuchin', 'silvery_marmoset', 'common_squirrel_monkey', 'black_headed_night_monkey','nilgiri_langur' ]
names: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
backbone: 'efficientNet'
efftlvl: 0
optimizer: 'Adam'
mode: 'train'
epoch: 2
load: False
output: 'output'
dataset_path: null
- For prediction [predict.yaml]
nc: 10
# names: ['mantled_howler', 'patas_monkey', 'bald_uakari', 'japanese_macaque', 'pygmy_marmoset',
# 'white_headed_capuchin', 'silvery_marmoset', 'common_squirrel_monkey', 'black_headed_night_monkey','nilgiri_langur' ]
names: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
backbone: 'efficientNet'
efftlvl: 0
output: 'output'
image: 'baobao.jpg'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
objifier-0.1.1.tar.gz
(22.0 kB
view details)
Built Distribution
objifier-0.1.1-py3-none-any.whl
(24.4 kB
view details)
File details
Details for the file objifier-0.1.1.tar.gz
.
File metadata
- Download URL: objifier-0.1.1.tar.gz
- Upload date:
- Size: 22.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5269c5a7d05cc899b73c1dbd59c45799817cac7c073d0f10ee9b117fd1cd640c |
|
MD5 | 48fcf65cf81303abef4ba5b1df0844ce |
|
BLAKE2b-256 | 40e3d3ec6677e0ad2d03e7171211ab5b9d867f48a78c2af80c131198018f77d7 |
File details
Details for the file objifier-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: objifier-0.1.1-py3-none-any.whl
- Upload date:
- Size: 24.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e2e69804c0a833b4aa82f9c084ec328a5d176e9b61de754a10e53694eac61db3 |
|
MD5 | dd7f57bcce814a93740dd851a7dcc536 |
|
BLAKE2b-256 | 0f9a7526aeac0d99b8bd5c4dd3d84b629c2beef731bef58bfeba0d9c0b7f6f94 |