Skip to main content

Object Classifier

Project description

OBJECT CLASSIFIER

Clone this repository

  • for SSH
git clone git@github.com:1chimaruGin/Object-classifier.git
  • for https
https://github.com/1chimaruGin/Object-classifier.git

Requirements

pip install -U requirements.txt

Dataset

  • the dataset directory should be the following format.

# for example, dog vs cat classification
data/
    -train/
        dog/
            -*.jpg or *.png
        cat/
            -*.jpg or *.png
    -val/
        dog/
            -*.jpg or *.png
        cat/
            -*.jpg or *.png

Usage with Argparse

cd Object-classifier/objifier
  • Update number of classes and names in data.yaml

  • For training model(ResNet)

$ python main.py -m [mode: train] -opt [optimizer: (default='SGD')]  -epochs [epochs: (default=25)] 
  • For training model(EfficientNet)
$ python main.py -m [mode: train] -opt [optimizer]  -epochs [epochs] -backbone [backbone: efficientNet] -lvl [efficientNet level]
  • For prediction
$ python main.py -m [mode: predict] -im [input image] - backbone [backbone: ResNet or efficientNe] -lvl [efficientNet level]

Usage with YAML (via pip)

Create a YAML file as sample below:

  • For training [train.yaml]
nc: 10
# names: ['mantled_howler', 'patas_monkey', 'bald_uakari', 'japanese_macaque', 'pygmy_marmoset', 
#       'white_headed_capuchin', 'silvery_marmoset', 'common_squirrel_monkey', 'black_headed_night_monkey','nilgiri_langur' ]

names: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

backbone: 'efficientNet'

efftlvl: 0

optimizer: 'Adam'

mode: 'train'

epoch: 2

load: False

output: 'output'

dataset_path: null

  • For prediction [predict.yaml]
nc: 10
# names: ['mantled_howler', 'patas_monkey', 'bald_uakari', 'japanese_macaque', 'pygmy_marmoset', 
#       'white_headed_capuchin', 'silvery_marmoset', 'common_squirrel_monkey', 'black_headed_night_monkey','nilgiri_langur' ]

names: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

backbone: 'efficientNet'

efftlvl: 0

output: 'output'

image: 'baobao.jpg'

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

objifier-0.1.1.tar.gz (22.0 kB view hashes)

Uploaded source

Built Distribution

objifier-0.1.1-py3-none-any.whl (24.4 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page