This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Saves and writes ObsPy streams to hdf5 files. Stats attributes are preserved if they are numbers, strings, UTCDateTime objects or numpy arrays. It can be used as a plugin to obspy’s read function to read a whole hdf5 file. Alternatively you can iterate over the traces in a hdf5 file with the iterh5 function.

Installation

Install h5py and obspy. After that install obspyh5 using pip by:

pip install obspyh5

Alternatively you can install obspyh5 by downloading the source code and running:

python setup.py install

Usage

Basic example using the obspy plugin:

>>> from obspy import read
>>> stream = read()  # load example stream
>>> print stream
..3 Trace(s) in Stream:
BW.RJOB..EHZ | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
BW.RJOB..EHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
BW.RJOB..EHE | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
>>> stream.write('test.h5', 'H5')  # declare 'H5' as format
>>> print read('test.h5')  # Order is not preserved!
3 Trace(s) in Stream:
BW.RJOB..EHZ | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
BW.RJOB..EHE | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
BW.RJOB..EHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples

Example iterating over traces in a huge hdf5 file. After each iteration the trace is not kept in memory and therefore it is possible to process a huge hdf5 file on a PC without problems.

>>> from obspyh5 import iterh5
>>> for trace in iterh5('huge_in.h5')
        trace.do_something()
        trace.write('huge_out.h5', 'H5', mode='a')  # append mode to write into file

Alternative indexing

obspyh5 supports alternative indexing.

>>> from obspy import read
>>> import obspyh5
>>> print obspyh5._INDEX  # default index
{network}.{station}/{location}.{channel}/{starttime.datetime:%Y-%m-%dT%H:%M:%S}_{endtime.datetime:%Y-%m-%dT%H:%M:%S}

The index gets populated by the stats object when writing a trace, e.g.

>>> stats = read()[0].stats
>>> print obspyh5._INDEX.format(**stats)
'BW.RJOB/.EHZ/2009-08-24T00:20:03_2009-08-24T00:20:32'

To change the index use set_index.

>>> obspyh5.set_index('xcorr')  # xcorr indexing
>>> obspyh5.set_index('{newtork}.{station}/{distance}')  # custom indexing

When using the ‘xcorr’ indexing stats needs the entries ‘network1’, ‘station1’, ‘location1’, ‘channel1’, ‘network2’, ‘station2’, ‘location2’ and ‘channel2’ of the first and second station. An example:

>>> from obspy import read
>>> import obspyh5
>>> obspyh5.set_index('xcorr')  # activate xcorr indexing
>>> stream = read()
>>> for i, tr in enumerate(stream):  # manipulate stats object
        station1, station2 = 'ST1', 'ST%d' % i
        channel1, channel2 = 'HHZ', 'HHN'
        s = tr.stats
        # we manipulate seed id so that important information gets
        # printed by obspy
        s.network, s.station = s.station1, s.channel1 = station1, channel1
        s.location, s.channel = s.station2, s.channel2 = station2, channel2
        s.network1 = s.network2 = 'BW'
        s.location1 = s.location2 = ''
>>> print stream
ST1.HHZ.ST0.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
ST1.HHZ.ST1.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
ST1.HHZ.ST2.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
>>> stream.write('test_xcorr.h5', 'H5')
>>> print read('test_xcorr.h5')
ST1.HHZ.ST0.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
ST1.HHZ.ST1.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
ST1.HHZ.ST2.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples

Note

See also ASDF for a more comprehensive approach.

Use case: Cross-correlation of late Okhotsk coda (notebook).

Release History

Release History

0.2.3

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
obspyh5-0.2.3.tar.gz (8.4 kB) Copy SHA256 Checksum SHA256 Source Jun 29, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting