Skip to main content

OCEAN-AI

Project description

OCEAN-AI

Logo


SAI ITMO

PyPI PyPI - Python Version PyPI - Implementation GitHub repo size PyPI - Status PyPI - License GitHub top language Documentation Status


Documentation in Russian

Description


OCEAN-AI is an open-source library consisting of a set of algorithms for intellectual analysis of human behavior based on multimodal data for automatic personality traits (PT) assessment. The library evaluates five PT: Openness to experience, Conscientiousness, Extraversion, Agreeableness, Non-Neuroticism.

Pipeline


OCEAN-AI includes three main algorithms:

  1. Audio Information Analysis Algorithm (AIA).
  2. Video Information Analysis Algorithm (VIA).
  3. Text Information Analysis Algorithm (TIA).
  4. Multimodal Information Fusion Algorithm (MIF).

The AIA, VIA and TIA algorithms implement the functions of strong artificial intelligence (AI) in terms of complexing acoustic, visual and linguistic features built on different principles (hand-crafted and deep features), i.e. these algorithms implement the approaches of composite (hybrid) AI. The necessary pre-processing of audio, video and text information, the calculation of visual, acoustic and linguistic features and the output of predictions of personality traits based on them are carried out in the algorithms.

The MIF algorithm is a combination of three information analysis algorithms (AIA, VIA and TIA). This algorithm performs feature-level fusion obtained by the AIA, VIA and TIA algorithms.

In addition to the main task - unimodal and multimodal personality traits assessment, the features implemented in OCEAN-AI will allow researchers to solve other problems of analyzing human behavior, for example, affective state recognition.

To install the library, you should refer to the Installation and Update.

To work with audio information, you should refer to the Audio information processing.

To work with video information, you should refer to the Video information processing.

To work with text information, you should refer to the Text information processing.

To work with multimodal information, you should refer to the Multimodal information processing.

The library solves practical tasks:

  1. Ranking of potential candidates by professional responsibilities.
  2. Predicting consumer preferences for industrial goods.
  3. Forming effective work teams.

OCEAN-AI uses the latest open-source libraries for audio, video and text processing: librosa, openSMILE, openCV, mediapipe, transformers.

OCEAN-AI is written in the python programming language. Neural network models are implemented and trained using an open-source library code TensorFlow.


Research data

The OCEAN-AI library was tested on two corpora:

  1. The publicly available and large-scale First Impressions V2 corpus.
  2. On the first publicly available Russian-language Multimodal Personality Traits Assessment (MuPTA) corpus.

Development team

Certificate of state registration of a computer program

Library of algorithms for intelligent analysis of human behavior based on multimodal data, providing human's personality traits assessment to perform professional duties (OCEAN-AI)

Certificate of state registration of a database

MuPTA - Multimodal Personality Traits Assessment Corpus


Publications

Journals

@article{ryumina22_neurocomputing,
    author = {Elena Ryumina and Denis Dresvyanskiy and Alexey Karpov},
    title = {In Search of a Robust Facial Expressions Recognition Model: A Large-Scale Visual Cross-Corpus Study},
    journal = {Neurocomputing},
    volume = {514},
    pages = {435-450},
    year = {2022},
    doi = {https://doi.org/10.1016/j.neucom.2022.10.013},
}
@article{ryumina24_eswa,
    author = {Elena Ryumina and Maxim Markitantov and Dmitry Ryumin and Alexey Karpov},
    title = {OCEAN-AI Framework with EmoFormer Cross-Hemiface Attention Approach for Personality Traits Assessment},
    journal = {Expert Systems with Applications},
    volume = {239},
    pages = {122441},
    year = {2024},
    doi = {https://doi.org/10.1016/j.eswa.2023.122441},
}

Conferences

@inproceedings{ryumina23_interspeech,
    author = {Elena Ryumina and Dmitry Ryumin and Maxim Markitantov and Heysem Kaya and Alexey Karpov},
    title = {Multimodal Personality Traits Assessment (MuPTA) Corpus: The Impact of Spontaneous and Read Speech},
    year = {2023},
    booktitle = {INTERSPEECH},
    pages = {4049--4053},
    doi = {https://doi.org/10.21437/Interspeech.2023-1686},
}

Supported by

The study is supported by the Research Center Strong Artificial Intelligence in Industry of ITMO University as part of the plan of the center's program: Development and testing of an experimental prototype of a library of strong AI algorithms in terms of hybrid decision making based on the interaction of AI and decision maker based on models of professional behavior and cognitive processes of decision maker in poorly formalized tasks with high uncertainty.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oceanai-1.0.0a21.tar.gz (116.2 kB view details)

Uploaded Source

Built Distribution

oceanai-1.0.0a21-py3-none-any.whl (126.9 kB view details)

Uploaded Python 3

File details

Details for the file oceanai-1.0.0a21.tar.gz.

File metadata

  • Download URL: oceanai-1.0.0a21.tar.gz
  • Upload date:
  • Size: 116.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for oceanai-1.0.0a21.tar.gz
Algorithm Hash digest
SHA256 166da2aff357be25cc0890f02362f25387bf2464532db7d0ddc094b6a02e5cc6
MD5 a506d2a5bbdc25b7c42be0fe8e9de725
BLAKE2b-256 616f01b1c0c203ade6f2cd64968fc2fa0ba74cc1ef35d97eb4a7fe198d625f19

See more details on using hashes here.

File details

Details for the file oceanai-1.0.0a21-py3-none-any.whl.

File metadata

  • Download URL: oceanai-1.0.0a21-py3-none-any.whl
  • Upload date:
  • Size: 126.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for oceanai-1.0.0a21-py3-none-any.whl
Algorithm Hash digest
SHA256 ea4a28f10692c7710d08ee2d78c73e1ab5ddbb2b44fbedd37f0ce2237d3339b6
MD5 e7f2f7a40c9c220a3fb92b01e5e43fae
BLAKE2b-256 65f82003f9b336ea89f2325cf56589c1f6f0288ad5103ed8cfb2ce3a83e77edc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page