Skip to main content

OCR-D wrapper for detectron2 based segmentation models

Project description

PyPI version

ocrd_detectron2

OCR-D wrapper for detectron2 based segmentation models

Introduction

This offers OCR-D compliant workspace processors for document layout analysis with models trained on Detectron2, which implements Faster R-CNN, Mask R-CNN, Cascade R-CNN, Feature Pyramid Networks and Panoptic Segmentation, among others.

In trying to cover a broad range of third-party models, a few sacrifices have to be made: Deployment of models may be difficult, and needs configuration. Class labels (really PAGE-XML region types) must be provided. The code itself tries to cope with panoptic and instance segmentation models (with or without masks).

Only meant for (coarse) page segmentation into regions – no text lines, no reading order, no orientation.

Installation

Create and activate a virtual environment as usual.

To install Python dependencies:

make deps

Which is the equivalent of:

pip install -r requirements.txt -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html # for CUDA 11.3

To install this module, then do:

make install

Which is the equivalent of:

pip install .

Usage

OCR-D processor interface ocrd-detectron2-segment

To be used with PAGE-XML documents in an OCR-D annotation workflow.

Usage: ocrd-detectron2-segment [OPTIONS]

  Detect regions with Detectron2

  > Use detectron2 to segment each page into regions.

  > Open and deserialize PAGE input files and their respective images.
  > Fetch a raw and a binarized image for the page frame (possibly
  > cropped and deskewed).

  > Feed the raw image into the detectron2 predictor that has been used
  > to load the given model. Then, depending on the model capabilities
  > (whether it can do panoptic segmentation or only instance
  > segmentation, whether the latter can do masks or only bounding
  > boxes), post-process the predictions:

  > - panoptic segmentation: take the provided segment label map, and
  >   apply the segment to class label map
  > - instance segmentation: find an optimal non-overlapping set (flat
  >   map) of instances via non-maximum suppression; then extend / shrink
  >   the surviving masks to fully include / exclude connected components
  >   in the foreground that are on the boundary

  > Finally, find the convex hull polygon for each region, and map its
  > class id to a new PAGE region type (and subtype).

  > Produce a new output file by serialising the resulting hierarchy.

Options:
  -I, --input-file-grp USE        File group(s) used as input
  -O, --output-file-grp USE       File group(s) used as output
  -g, --page-id ID                Physical page ID(s) to process
  --overwrite                     Remove existing output pages/images
                                  (with --page-id, remove only those)
  -p, --parameter JSON-PATH       Parameters, either verbatim JSON string
                                  or JSON file path
  -P, --param-override KEY VAL    Override a single JSON object key-value pair,
                                  taking precedence over --parameter
  -m, --mets URL-PATH             URL or file path of METS to process
  -w, --working-dir PATH          Working directory of local workspace
  -l, --log-level [OFF|ERROR|WARN|INFO|DEBUG|TRACE]
                                  Log level
  -C, --show-resource RESNAME     Dump the content of processor resource RESNAME
  -L, --list-resources            List names of processor resources
  -J, --dump-json                 Dump tool description as JSON and exit
  -h, --help                      This help message
  -V, --version                   Show version

Parameters:
   "categories" [array - ["TextRegion:paragraph", "TextRegion:heading",
    "TextRegion:list-label", "TableRegion", "ImageRegion"]]
    maps region category (position) to region type
   "min_confidence" [number - 0.5]
    confidence threshold for detections
   "model_config" [string - REQUIRED]
    path name of model config
   "model_weights" [string - REQUIRED]
    path name of model weights
   "device" [string - "cuda"]
    select computing device for Torch (e.g. cpu or cuda:0); will fall
    back to CPU if no GPU is available

Example:

ocrd resmgr download -n ocrd-detectron2-segment https://layoutlm.blob.core.windows.net/tablebank/model_zoo/detection/All_X152/All_X152.yaml
ocrd resmgr download -n ocrd-detectron2-segment https://layoutlm.blob.core.windows.net/tablebank/model_zoo/detection/All_X152/model_final.pth
ocrd-detectron2-segment -I OCR-D-BIN -O OCR-D-SEG-TAB -P categories '["TableRegion"]' -P model_config All_X152.yaml -P model_weights model_final.pth -P min_confidence 0.1

Models

Note: These are just examples, no exhaustive search was done yet!

Note: Make sure you unpack first if the download link is an archive. Also, the filename suffix (.pth vs .pkl) of the weight file does matter!

TableBank

R152-FPN config|weights|["TableRegion"]

PubLayNet

R50-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:list-label", "TableRegion", "ImageRegion"]

R101-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:list-label", "TableRegion", "ImageRegion"]

X101-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:list-label", "TableRegion", "ImageRegion"]

PubLayNet

R50-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:list-label", "TableRegion", "ImageRegion"]

R101-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:list-label", "TableRegion", "ImageRegion"]

LayoutParser

provides different model variants of various depths for multiple datasets:

See here for an overview. You will have to adapt the label map to conform to PAGE-XML region (sub)types accordingly.

DocBank

X101-FPN archive

Proposed mappings:

  • ["TextRegion:heading", "TextRegion:credit", "TextRegion:caption", "TextRegion:other", "MathsRegion", "GraphicRegion", "TextRegion:footer", "TextRegion:floating", "TextRegion:paragraph", "TextRegion:endnote", "TextRegion:heading", "TableRegion", "TextRegion:heading" (using only predefined @type)
  • ["TextRegion:abstract", "TextRegion:author", "TextRegion:caption", "TextRegion:date", "MathsRegion", "GraphicRegion", "TextRegion:footer", "TextRegion:list", "TextRegion:paragraph", "TextRegion:reference", "TextRegion:heading", "TableRegion", "TextRegion:title" (using @custom as well)

Testing

none yet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ocrd_detectron2-0.1.0.tar.gz (16.6 kB view details)

Uploaded Source

Built Distribution

ocrd_detectron2-0.1.0-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file ocrd_detectron2-0.1.0.tar.gz.

File metadata

  • Download URL: ocrd_detectron2-0.1.0.tar.gz
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for ocrd_detectron2-0.1.0.tar.gz
Algorithm Hash digest
SHA256 111bf32ed9e25173b455d56bb50870b018a5e1ebb653252b2b250d30a157d24b
MD5 b3a1cd1183794e1505fd0db050f4e10a
BLAKE2b-256 e04147dc28578d537e69c05e05d39fcbd1279295ec21596991082f73881890ab

See more details on using hashes here.

File details

Details for the file ocrd_detectron2-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: ocrd_detectron2-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for ocrd_detectron2-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 225f2780c0b0cd3633ba8f0900cef7c620adefe30a9e87961bd3afa365679697
MD5 16d42ce9e6fb3ecc1d64ba28ba96275c
BLAKE2b-256 24647f42b3bbd506578c5fd60d1018adee879c9835136ce719a642ec59cf47e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page