Skip to main content

OCR-D wrapper for detectron2 based segmentation models

Project description

PyPI version

ocrd_detectron2

OCR-D wrapper for detectron2 based segmentation models

Introduction

This offers OCR-D compliant workspace processors for document layout analysis with models trained on Detectron2, which implements Faster R-CNN, Mask R-CNN, Cascade R-CNN, Feature Pyramid Networks and Panoptic Segmentation, among others.

In trying to cover a broad range of third-party models, a few sacrifices have to be made: Deployment of models may be difficult, and needs configuration. Class labels (really PAGE-XML region types) must be provided. The code itself tries to cope with panoptic and instance segmentation models (with or without masks).

Only meant for (coarse) page segmentation into regions – no text lines, no reading order, no orientation.

Installation

Create and activate a virtual environment as usual.

To install Python dependencies:

make deps

Which is the equivalent of:

pip install -r requirements.txt -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html # for CUDA 11.3
pip install -r requirements.txt -f https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.10/index.html # for CPU only

To install this module, then do:

make install

Which is the equivalent of:

pip install .

Usage

OCR-D processor interface ocrd-detectron2-segment

To be used with PAGE-XML documents in an OCR-D annotation workflow.

Usage: ocrd-detectron2-segment [OPTIONS]

  Detect regions with Detectron2

  > Use detectron2 to segment each page into regions.

  > Open and deserialize PAGE input files and their respective images.
  > Fetch a raw and a binarized image for the page frame (possibly
  > cropped and deskewed).

  > Feed the raw image into the detectron2 predictor that has been used
  > to load the given model. Then, depending on the model capabilities
  > (whether it can do panoptic segmentation or only instance
  > segmentation, whether the latter can do masks or only bounding
  > boxes), post-process the predictions:

  > - panoptic segmentation: take the provided segment label map, and
  >   apply the segment to class label map
  > - instance segmentation: find an optimal non-overlapping set (flat
  >   map) of instances via non-maximum suppression; then extend / shrink
  >   the surviving masks to fully include / exclude connected components
  >   in the foreground that are on the boundary

  > Finally, find the convex hull polygon for each region, and map its
  > class id to a new PAGE region type (and subtype).

  > Produce a new output file by serialising the resulting hierarchy.

Options:
  -I, --input-file-grp USE        File group(s) used as input
  -O, --output-file-grp USE       File group(s) used as output
  -g, --page-id ID                Physical page ID(s) to process
  --overwrite                     Remove existing output pages/images
                                  (with --page-id, remove only those)
  -p, --parameter JSON-PATH       Parameters, either verbatim JSON string
                                  or JSON file path
  -P, --param-override KEY VAL    Override a single JSON object key-value pair,
                                  taking precedence over --parameter
  -m, --mets URL-PATH             URL or file path of METS to process
  -w, --working-dir PATH          Working directory of local workspace
  -l, --log-level [OFF|ERROR|WARN|INFO|DEBUG|TRACE]
                                  Log level
  -C, --show-resource RESNAME     Dump the content of processor resource RESNAME
  -L, --list-resources            List names of processor resources
  -J, --dump-json                 Dump tool description as JSON and exit
  -h, --help                      This help message
  -V, --version                   Show version

Parameters:
   "categories" [array - REQUIRED]
    maps each region category (position) of the model to a PAGE region
    type (and subtype if separated by colon), e.g.
    ['TextRegion:paragraph', 'TextRegion:heading',
    'TextRegion:floating', 'TableRegion', 'ImageRegion'] for PubLayNet
   "min_confidence" [number - 0.5]
    confidence threshold for detections
   "model_config" [string - REQUIRED]
    path name of model config
   "model_weights" [string - REQUIRED]
    path name of model weights
   "device" [string - "cuda"]
    select computing device for Torch (e.g. cpu or cuda:0); will fall
    back to CPU if no GPU is available

Example:

ocrd resmgr download -n ocrd-detectron2-segment https://layoutlm.blob.core.windows.net/tablebank/model_zoo/detection/All_X152/All_X152.yaml
ocrd resmgr download -n ocrd-detectron2-segment https://layoutlm.blob.core.windows.net/tablebank/model_zoo/detection/All_X152/model_final.pth
ocrd-detectron2-segment -I OCR-D-BIN -O OCR-D-SEG-TAB -P categories '["TableRegion"]' -P model_config All_X152.yaml -P model_weights model_final.pth -P min_confidence 0.1

Models

Note: These are just examples, no exhaustive search was done yet!

Note: Make sure you unpack first if the download link is an archive. Also, the filename suffix (.pth vs .pkl) of the weight file does matter!

TableBank

R152-FPN config|weights|["TableRegion"]

PubLayNet

R50-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:floating", "TableRegion", "ImageRegion"]

R101-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:floating", "TableRegion", "ImageRegion"]

X101-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:floating", "TableRegion", "ImageRegion"]

PubLayNet

R50-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:floating", "TableRegion", "ImageRegion"]

R101-FPN config|weights|["TextRegion:paragraph", "TextRegion:heading", "TextRegion:floating", "TableRegion", "ImageRegion"]

LayoutParser

provides different model variants of various depths for multiple datasets:

See here for an overview. You will have to adapt the label map to conform to PAGE-XML region (sub)types accordingly.

DocBank

X101-FPN archive

Proposed mappings:

  • ["TextRegion:heading", "TextRegion:credit", "TextRegion:caption", "TextRegion:other", "MathsRegion", "GraphicRegion", "TextRegion:footer", "TextRegion:floating", "TextRegion:paragraph", "TextRegion:endnote", "TextRegion:heading", "TableRegion", "TextRegion:heading"] (using only predefined @type)
  • ["TextRegion:abstract", "TextRegion:author", "TextRegion:caption", "TextRegion:date", "MathsRegion", "GraphicRegion", "TextRegion:footer", "TextRegion:list", "TextRegion:paragraph", "TextRegion:reference", "TextRegion:heading", "TableRegion", "TextRegion:title"] (using @custom as well)

Testing

none yet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ocrd_detectron2-0.1.1.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

ocrd_detectron2-0.1.1-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file ocrd_detectron2-0.1.1.tar.gz.

File metadata

  • Download URL: ocrd_detectron2-0.1.1.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for ocrd_detectron2-0.1.1.tar.gz
Algorithm Hash digest
SHA256 7f1b858d46792fb361716dca99c178b27fb5c273417c5801800e9524883e7401
MD5 34f54def020bca3e9de4394a4d702741
BLAKE2b-256 de99806d349fcc13ba972185643073135602249dd69f89d69aaefa352a1f0a04

See more details on using hashes here.

File details

Details for the file ocrd_detectron2-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: ocrd_detectron2-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for ocrd_detectron2-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e85ce3f8ad2c9df5590e855509b6567e79031614fed9c25b05de9060be148569
MD5 d0ebafde9f4aa342a37080754190cbf0
BLAKE2b-256 a907d7cf3c6533cd5f357b324aa7c14bbd74b49d04bc2391bea8cd7301237112

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page