Skip to main content

A simple, Pillow-friendly, Python wrapper around tesseract-ocr API using Cython

Project description

A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR).

TravisCI build status Latest version on PyPi Supported python versions

tesserocr integrates directly with Tesseract’s C++ API using Cython which allows for a simple Pythonic and easy-to-read source code. It enables real concurrent execution when used with Python’s threading module by releasing the GIL while processing an image in tesseract.

tesserocr is designed to be Pillow-friendly but can also be used with image files instead.

Requirements

Requires libtesseract (>=3.04) and libleptonica (>=1.71).

On Debian/Ubuntu:

$ apt-get install tesseract-ocr libtesseract-dev libleptonica-dev pkg-config

You may need to manually compile tesseract for a more recent version. Note that you may need to update your LD_LIBRARY_PATH environment variable to point to the right library versions in case you have multiple tesseract/leptonica installations.

Cython (>=0.23) is required for building and optionally Pillow to support PIL.Image objects.

Installation

Linux and BSD/MacOS

$ pip install tesserocr

The setup script attempts to detect the include/library dirs (via pkg-config if available) but you can override them with your own parameters, e.g.:

$ CPPFLAGS=-I/usr/local/include pip install tesserocr

or

$ python setup.py build_ext -I/usr/local/include

Tested on Linux and BSD/MacOS

Windows

The proposed downloads consist of stand-alone packages containing all the Windows libraries needed for execution. This means that no additional installation of tesseract is required on your system.

Conda

You can use the channel simonflueckiger to install from Conda:

> conda install -c simonflueckiger tesserocr

or to get tesserocr compiled with tesseract 4.0.0:

> conda install -c simonflueckiger/label/tesseract-4.0.0-master tesserocr

pip

Download the wheel file corresponding to your Windows platform and Python installation from simonflueckiger/tesserocr-windows_build/releases and install them via:

> pip install <package_name>.whl

Usage

Initialize and re-use the tesseract API instance to score multiple images:

from tesserocr import PyTessBaseAPI

images = ['sample.jpg', 'sample2.jpg', 'sample3.jpg']

with PyTessBaseAPI() as api:
    for img in images:
        api.SetImageFile(img)
        print(api.GetUTF8Text())
        print(api.AllWordConfidences())
# api is automatically finalized when used in a with-statement (context manager).
# otherwise api.End() should be explicitly called when it's no longer needed.

PyTessBaseAPI exposes several tesseract API methods. Make sure you read their docstrings for more info.

Basic example using available helper functions:

import tesserocr
from PIL import Image

print(tesserocr.tesseract_version())  # print tesseract-ocr version
print(tesserocr.get_languages())  # prints tessdata path and list of available languages

image = Image.open('sample.jpg')
print(tesserocr.image_to_text(image))  # print ocr text from image
# or
print(tesserocr.file_to_text('sample.jpg'))

image_to_text and file_to_text can be used with threading to concurrently process multiple images which is highly efficient.

Advanced API Examples

GetComponentImages example:

from PIL import Image
from tesserocr import PyTessBaseAPI, RIL

image = Image.open('/usr/src/tesseract/testing/phototest.tif')
with PyTessBaseAPI() as api:
    api.SetImage(image)
    boxes = api.GetComponentImages(RIL.TEXTLINE, True)
    print('Found {} textline image components.'.format(len(boxes)))
    for i, (im, box, _, _) in enumerate(boxes):
        # im is a PIL image object
        # box is a dict with x, y, w and h keys
        api.SetRectangle(box['x'], box['y'], box['w'], box['h'])
        ocrResult = api.GetUTF8Text()
        conf = api.MeanTextConf()
        print(u"Box[{0}]: x={x}, y={y}, w={w}, h={h}, "
              "confidence: {1}, text: {2}".format(i, conf, ocrResult, **box))

Orientation and script detection (OSD):

from PIL import Image
from tesserocr import PyTessBaseAPI, PSM

with PyTessBaseAPI(psm=PSM.AUTO_OSD) as api:
    image = Image.open("/usr/src/tesseract/testing/eurotext.tif")
    api.SetImage(image)
    api.Recognize()

    it = api.AnalyseLayout()
    orientation, direction, order, deskew_angle = it.Orientation()
    print("Orientation: {:d}".format(orientation))
    print("WritingDirection: {:d}".format(direction))
    print("TextlineOrder: {:d}".format(order))
    print("Deskew angle: {:.4f}".format(deskew_angle))

or more simply with OSD_ONLY page segmentation mode:

from tesserocr import PyTessBaseAPI, PSM

with PyTessBaseAPI(psm=PSM.OSD_ONLY) as api:
    api.SetImageFile("/usr/src/tesseract/testing/eurotext.tif")

    os = api.DetectOS()
    print("Orientation: {orientation}\nOrientation confidence: {oconfidence}\n"
          "Script: {script}\nScript confidence: {sconfidence}".format(**os))

more human-readable info with tesseract 4+ (demonstrates LSTM engine usage):

from tesserocr import PyTessBaseAPI, PSM, OEM

with PyTessBaseAPI(psm=PSM.OSD_ONLY, oem=OEM.LSTM_ONLY) as api:
    api.SetImageFile("/usr/src/tesseract/testing/eurotext.tif")

    os = api.DetectOrientationScript()
    print("Orientation: {orient_deg}\nOrientation confidence: {orient_conf}\n"
          "Script: {script_name}\nScript confidence: {script_conf}".format(**os))

Iterator over the classifier choices for a single symbol:

from __future__ import print_function

from tesserocr import PyTessBaseAPI, RIL, iterate_level

with PyTessBaseAPI() as api:
    api.SetImageFile('/usr/src/tesseract/testing/phototest.tif')
    api.SetVariable("save_blob_choices", "T")
    api.SetRectangle(37, 228, 548, 31)
    api.Recognize()

    ri = api.GetIterator()
    level = RIL.SYMBOL
    for r in iterate_level(ri, level):
        symbol = r.GetUTF8Text(level)  # r == ri
        conf = r.Confidence(level)
        if symbol:
            print(u'symbol {}, conf: {}'.format(symbol, conf), end='')
        indent = False
        ci = r.GetChoiceIterator()
        for c in ci:
            if indent:
                print('\t\t ', end='')
            print('\t- ', end='')
            choice = c.GetUTF8Text()  # c == ci
            print(u'{} conf: {}'.format(choice, c.Confidence()))
            indent = True
        print('---------------------------------------------')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ocrd-fork-tesserocr-3.0.0rc2.tar.gz (56.4 kB view details)

Uploaded Source

File details

Details for the file ocrd-fork-tesserocr-3.0.0rc2.tar.gz.

File metadata

  • Download URL: ocrd-fork-tesserocr-3.0.0rc2.tar.gz
  • Upload date:
  • Size: 56.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/2.7.9

File hashes

Hashes for ocrd-fork-tesserocr-3.0.0rc2.tar.gz
Algorithm Hash digest
SHA256 6eccaf8b8eff897c09f9b4258410ba4c32c04e633d7d2d6f6170646321cc2b7f
MD5 8e083be1d73e175695fe4363cee171bc
BLAKE2b-256 5bdc155dda28b9d8b61723ea4669ead95b6127e110a52c8125c74042c663c654

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page