Skip to main content

A simple, Pillow-friendly, Python wrapper around tesseract-ocr API using Cython

Project description

=========
tesserocr
=========

A simple, |Pillow|_-friendly,
wrapper around the ``tesseract-ocr`` API for Optical Character Recognition
(OCR).

.. image:: https://travis-ci.org/sirfz/tesserocr.svg?branch=master
:target: https://travis-ci.org/sirfz/tesserocr
:alt: TravisCI build status

.. image:: https://img.shields.io/pypi/v/tesserocr.svg?maxAge=2592000
:target: https://pypi.python.org/pypi/tesserocr
:alt: Latest version on PyPi

.. image:: https://img.shields.io/pypi/pyversions/tesserocr.svg?maxAge=2592000
:alt: Supported python versions

**tesserocr** integrates directly with Tesseract's C++ API using Cython
which allows for a simple Pythonic and easy-to-read source code. It
enables real concurrent execution when used with Python's ``threading``
module by releasing the GIL while processing an image in tesseract.

**tesserocr** is designed to be |Pillow|_-friendly but can also be used
with image files instead.

.. |Pillow| replace:: ``Pillow``
.. _Pillow: http://python-pillow.github.io/

Requirements
============

Requires libtesseract (>=3.04) and libleptonica (>=1.71).

On Debian/Ubuntu:

::

$ apt-get install tesseract-ocr libtesseract-dev libleptonica-dev

You may need to `manually compile tesseract`_ for a more recent version. Note that you may need
to update your ``LD_LIBRARY_PATH`` environment variable to point to the right library versions in
case you have multiple tesseract/leptonica installations.

|Cython|_ (>=0.23) is required for building and optionally |Pillow|_ to support ``PIL.Image`` objects.

.. _manually compile tesseract: https://github.com/tesseract-ocr/tesseract/wiki/Compiling
.. |Cython| replace:: ``Cython``
.. _Cython: http://cython.org/

Installation
============
Linux and BSD/MacOS
-------------------
::

$ pip install tesserocr

The setup script attempts to detect the include/library dirs (via |pkg-config|_ if available) but you
can override them with your own parameters, e.g.:

::

$ CPPFLAGS=-I/usr/local/include pip install tesserocr

or

::

$ python setup.py build_ext -I/usr/local/include

Tested on Linux and BSD/MacOS

.. |pkg-config| replace:: **pkg-config**
.. _pkg-config: https://pkgconfig.freedesktop.org/

Windows
-------
The proposed downloads consist of stand-alone packages containing all the Windows libraries needed for execution. This means that no additional installation of tesseract is required on your system.

Conda
`````
You can use the channel `simonflueckiger <https://anaconda.org/simonflueckiger/tesserocr>`_ to install from Conda:
::
> conda install -c simonflueckiger tesserocr

or to get **tesserocr** compiled with **tesseract 4.0.0**:
::
> conda install -c simonflueckiger/label/tesseract-4.0.0-master tesserocr

pip
```
Download the wheel file corresponding to your Windows platform and Python installation from `simonflueckiger/tesserocr-windows_build/releases <https://github.com/simonflueckiger/tesserocr-windows_build/releases>`_ and install them via:
::
> pip install <package_name>.whl

Usage
=====

Initialize and re-use the tesseract API instance to score multiple
images:

.. code:: python

from tesserocr import PyTessBaseAPI

images = ['sample.jpg', 'sample2.jpg', 'sample3.jpg']

with PyTessBaseAPI() as api:
for img in images:
api.SetImageFile(img)
print api.GetUTF8Text()
print api.AllWordConfidences()
# api is automatically finalized when used in a with-statement (context manager).
# otherwise api.End() should be explicitly called when it's no longer needed.

``PyTessBaseAPI`` exposes several tesseract API methods. Make sure you
read their docstrings for more info.

Basic example using available helper functions:

.. code:: python

import tesserocr
from PIL import Image

print tesserocr.tesseract_version() # print tesseract-ocr version
print tesserocr.get_languages() # prints tessdata path and list of available languages

image = Image.open('sample.jpg')
print tesserocr.image_to_text(image) # print ocr text from image
# or
print tesserocr.file_to_text('sample.jpg')

``image_to_text`` and ``file_to_text`` can be used with ``threading`` to
concurrently process multiple images which is highly efficient.

Advanced API Examples
---------------------

GetComponentImages example:
```````````````````````````

.. code:: python

from PIL import Image
from tesserocr import PyTessBaseAPI, RIL

image = Image.open('/usr/src/tesseract/testing/phototest.tif')
with PyTessBaseAPI() as api:
api.SetImage(image)
boxes = api.GetComponentImages(RIL.TEXTLINE, True)
print 'Found {} textline image components.'.format(len(boxes))
for i, (im, box, _, _) in enumerate(boxes):
# im is a PIL image object
# box is a dict with x, y, w and h keys
api.SetRectangle(box['x'], box['y'], box['w'], box['h'])
ocrResult = api.GetUTF8Text()
conf = api.MeanTextConf()
print (u"Box[{0}]: x={x}, y={y}, w={w}, h={h}, "
"confidence: {1}, text: {2}").format(i, conf, ocrResult, **box)

Orientation and script detection (OSD):
```````````````````````````````````````

.. code:: python

from PIL import Image
from tesserocr import PyTessBaseAPI, PSM

with PyTessBaseAPI(psm=PSM.AUTO_OSD) as api:
image = Image.open("/usr/src/tesseract/testing/eurotext.tif")
api.SetImage(image)
api.Recognize()

it = api.AnalyseLayout()
orientation, direction, order, deskew_angle = it.Orientation()
print "Orientation: {:d}".format(orientation)
print "WritingDirection: {:d}".format(direction)
print "TextlineOrder: {:d}".format(order)
print "Deskew angle: {:.4f}".format(deskew_angle)

or more simply with ``OSD_ONLY`` page segmentation mode:

.. code:: python

from tesserocr import PyTessBaseAPI, PSM

with PyTessBaseAPI(psm=PSM.OSD_ONLY) as api:
api.SetImageFile("/usr/src/tesseract/testing/eurotext.tif")

os = api.DetectOS()
print ("Orientation: {orientation}\nOrientation confidence: {oconfidence}\n"
"Script: {script}\nScript confidence: {sconfidence}").format(**os)

more human-readable info with tesseract 4+ (demonstrates LSTM engine usage):

.. code:: python

from tesserocr import PyTessBaseAPI, PSM, OEM

with PyTessBaseAPI(psm=PSM.OSD_ONLY, oem=OEM.LSTM_ONLY) as api:
api.SetImageFile("/usr/src/tesseract/testing/eurotext.tif")

os = api.DetectOrientationScript()
print ("Orientation: {orient_deg}\nOrientation confidence: {orient_conf}\n"
"Script: {script_name}\nScript confidence: {script_conf}").format(**os)

Iterator over the classifier choices for a single symbol:
`````````````````````````````````````````````````````````

.. code:: python

from tesserocr import PyTessBaseAPI, RIL, iterate_level

with PyTessBaseAPI() as api:
api.SetImageFile('/usr/src/tesseract/testing/phototest.tif')
api.SetVariable("save_blob_choices", "T")
api.SetRectangle(37, 228, 548, 31)
api.Recognize()

ri = api.GetIterator()
level = RIL.SYMBOL
for r in iterate_level(ri, level):
symbol = r.GetUTF8Text(level) # r == ri
conf = r.Confidence(level)
if symbol:
print u'symbol {}, conf: {}'.format(symbol, conf),
indent = False
ci = r.GetChoiceIterator()
for c in ci:
if indent:
print '\t\t ',
print '\t- ',
choice = c.GetUTF8Text() # c == ci
print u'{} conf: {}'.format(choice, c.Confidence())
indent = True
print '---------------------------------------------'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ocrd-fork-tesserocr-3.0.0rc1.tar.gz (55.0 kB view details)

Uploaded Source

File details

Details for the file ocrd-fork-tesserocr-3.0.0rc1.tar.gz.

File metadata

File hashes

Hashes for ocrd-fork-tesserocr-3.0.0rc1.tar.gz
Algorithm Hash digest
SHA256 e27271929cf7e3da4911bc79f49f1a08168bf2022ae505fcd5a29fb28c1c24e6
MD5 4b57512287241062aaca9712c0b8118d
BLAKE2b-256 ea520d8d0d92344ecc15ab0243adccf74c4828c23261d380e3b368d10e9636d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page