Skip to main content

No project description provided

Project description

# ocrscreen

ocr for recognizing text on computer screen

## Install ` pip install ocrscreen `

## Use

To create recognition database you need to create few (tens to hundreds) training samples in form of file pairs: png image file containing image of one line of text, and text file containing same line of text. Image and text should have same name except extension: .png for image and .gt.txt for text. Each character you want to recognize should be present in at least three samples.

If you have samples you can convert it into database with this command:

` ocrscreen-learn path/to/samples -o path/to/database `

Recognintion database is a list of directories, each directory contains .png files (one or many) representing character and .id file with text containing character (to avoid filesystem limitations). Directory name and file name does not matter. This form allows easy tuning and troubleshooting recognition problems.

When you have database you can run ocr on image

` ocrscreen-recognize -d path/to/database -i path/to/image `

or on screen ` ocrscreen-recognize -d path/to/database --screen `

or on portion of screen with –rect x y w h

` ocrscreen-recognize -d path/to/database --screen --rect 10 10 640 480 `

Inspect samples and database directory in the sources to get better understanding of data format.

## Notes

This ocr uses black and white bitmaps as search pattern to search on binarized image and only perfect equality counts as match. It doesn’t use dpi and neural networks, it cannot recognize scanned text or text in photo images, it is only for recognizing perfect digital text.

If you have linux and wayland you need to install pyscreenshot package. ` pip install pyscreenshot `

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ocrscreen-0.0.1-cp311-cp311-win_amd64.whl (83.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

ocrscreen-0.0.1-cp311-cp311-macosx_10_9_universal2.whl (176.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

ocrscreen-0.0.1-cp310-cp310-win_amd64.whl (84.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

ocrscreen-0.0.1-cp310-cp310-macosx_11_0_x86_64.whl (99.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

ocrscreen-0.0.1-cp39-cp39-win_amd64.whl (95.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

ocrscreen-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl (100.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

File details

Details for the file ocrscreen-0.0.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ocrscreen-0.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8bdfa69063043fbafbe7624af738d642bf846852287e7419ff04868b15eafcb6
MD5 110fa8ccc9a2b51f01003f6255a8379e
BLAKE2b-256 abc2497d7964c22e53df16710ec5c095d23d3d8a09e14dbc3ff992eae7dfec16

See more details on using hashes here.

File details

Details for the file ocrscreen-0.0.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ocrscreen-0.0.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2bd18191cc2f61cb6d5422d1cca5a0d09c1eef2cdac70a6e28e0bfeb3775550d
MD5 0301af721463ca4fec28914aab8b8bdf
BLAKE2b-256 01a42d8c34c8c68b007c7fa73c27abf026dbece047a018fc012cb42d6916f7e1

See more details on using hashes here.

File details

Details for the file ocrscreen-0.0.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ocrscreen-0.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c2f12ce5246320ed1832f54d69989c22875409ebeb805684866cd68026ed8c75
MD5 211c24b8d31ee8b7fcdf13384372f0f4
BLAKE2b-256 ae5d65d84f044dbbd6c98895f7ad209558e6ac94afd1b7dce1cc4cfdd5dcfdbf

See more details on using hashes here.

File details

Details for the file ocrscreen-0.0.1-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ocrscreen-0.0.1-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 c399a757ac9216b4ca2b840c26bbf318cf3ae492f565ecf8417fc71e7f3a8f9b
MD5 bbe5ee0b3f8cf3b960b34092c224e4af
BLAKE2b-256 d06404aa4a298c0726f6e5d274364a45159367e935ef4628e674b8c91f047e73

See more details on using hashes here.

File details

Details for the file ocrscreen-0.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ocrscreen-0.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 95.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for ocrscreen-0.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5d6aa5d81fe450c67523cb7fd4761229b469f0400325b4a98fb2f825ccdeb0d8
MD5 118bf0227ae892cbf700c370c6f1a113
BLAKE2b-256 a6719f9cdd23eac0540154c5cd700606b426292071bc8e47e520fd3ccb1121af

See more details on using hashes here.

File details

Details for the file ocrscreen-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for ocrscreen-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 92d31a4959794f7857a50e017bc3c7652ca712954a3efc193081cc47f48b3e7a
MD5 3d1ac0c2eafca024fa212fc3b497e56c
BLAKE2b-256 8c00e09162f5c689a99b95f94598aa51c46d8608c1c54de86502e6a4de1ae4f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page