Skip to main content

CLI tool for OCR-ing video frames on macOS

Project description

ocrvid

PyPI Changelog Tests License

CLI tool to extract text from videos using OCR on macOS.

[!NOTE] Currently, this tool only tested and works on macOS 13 or later.

[!CAUTION] This tool is still in early development stage. Current v0.x releases are not stable and may have breaking changes.

Installation

Install this tool using pip:

pip install ocrvid

Usage

Run OCR on a video

To extract text from a video, run:

ocrvid run path/to/video.mp4

then ocrvid generates frames from the video and runs OCR on each frame. Optionaly, frames can be saved in a directory passed --frames_dir / -fd.

OCR results are saved in a json file named video.json in the current directory. (where video is taken from input file name video)

for example, run against the test video file at tests/video/pexels-eva-elijas.mp4 in this repo:

ocrvid run tests/video/pexels-eva-elijas.mp4

Then pexels-eva-elija.json is generated in the current directory which looks like this:

{
    "video_file":"tests/video/pexels-eva-elijas.mp4",
    "frames":[
        {
            "frame_index":0,
            "results":[
                {
                    "text":"INSPIRING WORDS",
                    "confidence":1.0,
                    "bbox":[
                        0.17844826551211515,
                        0.7961793736859821,
                        0.3419540405273438,
                        0.10085802570754931
                    ]
                },
                {
                    "text":"\"Foar kills more dre",
                    "confidence":1.0,
                    "bbox":[
                        0.0724226723609706,
                        0.6839455987759758,
                        0.4780927975972494,
                        0.14592710683043575
                    ]
                },
                {
                    "text":"than failure ever",
                    "confidence":1.0,
                    "bbox":[
                        0.018455287246445035,
                        0.6549868414269003,
                        0.45329265594482426,
                        0.14363905857426462
                    ]
                },
                {
                    "text":"IZY KASSEM",
                    "confidence":0.5,
                    "bbox":[
                        -0.015967150208537523,
                        0.6675747977206025,
                        0.23065692583719888,
                        0.08114868486431293
                    ]
                },
                {
                    "text":"Entrepreneur",
                    "confidence":1.0,
                    "bbox":[
                        0.01941176222542875,
                        0.1353812367971159,
                        0.9058370590209961,
                        0.26137274083956863
                    ]
                }
            ]
        },
...

Interact with YouTube

Interacting YouTube? Please see yt-dlp.

Development

To contribute to this tool, first checkout the code. Then create a new virtual environment:

cd ocrvid
python -m venv venv
source venv/bin/activate

Now install the dependencies and test dependencies:

pip install -e '.[test,dev]'

To run the tests:

make test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ocrvid-0.5.1.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

ocrvid-0.5.1-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file ocrvid-0.5.1.tar.gz.

File metadata

  • Download URL: ocrvid-0.5.1.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.1

File hashes

Hashes for ocrvid-0.5.1.tar.gz
Algorithm Hash digest
SHA256 4483c24500efa8c82c6e84ee629a52f7cb7d370206f7ea0c2b4ee235870bd348
MD5 42b75f80b3d8634277e9c22693f211ff
BLAKE2b-256 cf314dc2d20204e3ef7451f1220c41f75c9abecc23e1fc7cf1744584d1dfcb02

See more details on using hashes here.

File details

Details for the file ocrvid-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: ocrvid-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.1

File hashes

Hashes for ocrvid-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 37206300a5124bf9aba3d4581ac5d307e427cc8f2b75fcbaac2816f9245e6b02
MD5 463bbdccd0880273f3167a0c30db139f
BLAKE2b-256 f9fbfaf0f7cf0784af507354dba84291552866e9ef178f0e60b556a7bde60f65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page