Object Detection metrics.
Project description
A metrics package for Object Detection.
Supported Metrics
Supported metrics include mAP
(Mean Average Precision), mAR
(Mean Average Recall)
and Intersection over Union IoU
.
Why OD-Metrics?
- User-friendly: simple to set and simple to use;
- Highly Customizable: every parameters that occur in the definition of
mAP
andmAR
can be set by user to custom values; - Compatibility with COCOAPI: each calculated metric is tested to coincide with COCOAPI metrics.
Installation
Install from PyPI
pip install od-metrics
Install from Github
pip install git+https://github.com/EMalagoli92/OD-Metrics
Documentation
For help, usage and API reference, please refer to Documentation
Simple Example
from od_metrics import ODMetrics
# Ground truths
y_true = [
{ # image 1
"boxes": [[25, 16, 38, 56], [129, 123, 41, 62]],
"labels": [0, 1]
},
{ # image 2
"boxes": [[123, 11, 43, 55], [38, 132, 59, 45]],
"labels": [0, 0]
}
]
# Predictions
y_pred = [
{ # image 1
"boxes": [[25, 27, 37, 54], [119, 111, 40, 67], [124, 9, 49, 67]],
"labels": [0, 1, 1],
"scores": [.88, .70, .80]
},
{ # image 2
"boxes": [[64, 111, 64, 58], [26, 140, 60, 47], [19, 18, 43, 35]],
"labels": [0, 1, 0],
"scores": [.71, .54, .74]
}
]
metrics = ODMetrics()
output = metrics.compute(y_true, y_pred)
print(output)
"""
{'mAP@[.5 | all | 100]': 0.2574257425742574,
'mAP@[.5:.95 | all | 100]': 0.10297029702970294,
'mAP@[.5:.95 | large | 100]': -1.0,
'mAP@[.5:.95 | medium | 100]': 0.10297029702970294,
'mAP@[.5:.95 | small | 100]': -1.0,
'mAP@[.75 | all | 100]': 0.0,
'mAR@[.5 | all | 100]': 0.25,
'mAR@[.5:.95 | all | 100]': 0.1,
'mAR@[.5:.95 | all | 10]': 0.1,
'mAR@[.5:.95 | all | 1]': 0.1,
'mAR@[.5:.95 | large | 100]': -1.0,
'mAR@[.5:.95 | medium | 100]': 0.1,
'mAR@[.5:.95 | small | 100]': -1.0,
'mAR@[.75 | all | 100]': 0.0,
'classes': [0, 1],
'n_images': 2}
"""
Aknowledgment
License
This work is made available under the MIT License
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
od-metrics-0.0.12.tar.gz
(21.3 kB
view details)
Built Distribution
File details
Details for the file od-metrics-0.0.12.tar.gz
.
File metadata
- Download URL: od-metrics-0.0.12.tar.gz
- Upload date:
- Size: 21.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e55ffaa5b7d22b399737ace37a5c719c1b7f4cb1e25aafbf04f0c398fd6871a |
|
MD5 | 9793070e8823c4aff6b0a91b70aa13ec |
|
BLAKE2b-256 | 49381f8a90a1fd6b0c695acdc6ec8430f1422907faa1a208cdacd06dd29f4860 |
File details
Details for the file od_metrics-0.0.12-py3-none-any.whl
.
File metadata
- Download URL: od_metrics-0.0.12-py3-none-any.whl
- Upload date:
- Size: 18.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa9309a7799b8547158877246e3294f5dfeae1a38bbab8d452cdd485fd7b7a92 |
|
MD5 | f813b49da6113a595c6633b9bd6a4bc8 |
|
BLAKE2b-256 | c89f21c033a682503fef422f33981496b88733d37f0ca146704c8296c32384b4 |