Skip to main content

Object Detection metrics.

Project description


License: MIT

A python library for Object Detection metrics.

Why OD-Metrics?

  • User-friendly: simple to set and simple to use;
  • Highly Customizable: every parameters that occur in the definition of mAP and mAR can be set by user to custom values;
  • Compatibility with COCOAPI: each calculated metric is tested to coincide with COCOAPI metrics.

Supported Metrics

Supported metrics include mAP (Mean Average Precision), mAR (Mean Average Recall) and IoU (Intersection over Union).

Documentation

For help, usage and API reference, please refer to Documentation

Try live Demo

Try OD-Metrics samples Binder

Installation

Install from PyPI

pip install od-metrics

Install from Github

pip install git+https://github.com/EMalagoli92/OD-Metrics

Simple Example

from od_metrics import ODMetrics

# Ground truths
y_true = [
    { # image 1
     "boxes": [[25, 16, 38, 56], [129, 123, 41, 62]],
     "labels": [0, 1]
     },
    { # image 2
     "boxes": [[123, 11, 43, 55], [38, 132, 59, 45]],
     "labels": [0, 0]
     }
    ]

# Predictions
y_pred = [
    { # image 1
     "boxes": [[25, 27, 37, 54], [119, 111, 40, 67], [124, 9, 49, 67]],
     "labels": [0, 1, 1],
     "scores": [.88, .70, .80]
     },
    { # image 2
     "boxes": [[64, 111, 64, 58], [26, 140, 60, 47], [19, 18, 43, 35]],
     "labels": [0, 1, 0],
     "scores": [.71, .54, .74]
     }
    ]

metrics = ODMetrics()
output = metrics.compute(y_true, y_pred)
print(output)
"""
{'mAP@[.5 | all | 100]': 0.2574257425742574,
 'mAP@[.5:.95 | all | 100]': 0.10297029702970294,
 'mAP@[.5:.95 | large | 100]': -1.0,
 'mAP@[.5:.95 | medium | 100]': 0.10297029702970294,
 'mAP@[.5:.95 | small | 100]': -1.0,
 'mAP@[.75 | all | 100]': 0.0,
 'mAR@[.5 | all | 100]': 0.25,
 'mAR@[.5:.95 | all | 100]': 0.1,
 'mAR@[.5:.95 | all | 10]': 0.1,
 'mAR@[.5:.95 | all | 1]': 0.1,
 'mAR@[.5:.95 | large | 100]': -1.0,
 'mAR@[.5:.95 | medium | 100]': 0.1,
 'mAR@[.5:.95 | small | 100]': -1.0,
 'mAR@[.75 | all | 100]': 0.0,
 'classes': [0, 1],
 'n_images': 2}
"""

Aknowledgment

License

This work is made available under the MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

od-metrics-1.0.1.tar.gz (22.0 kB view details)

Uploaded Source

Built Distribution

od_metrics-1.0.1-py3-none-any.whl (19.0 kB view details)

Uploaded Python 3

File details

Details for the file od-metrics-1.0.1.tar.gz.

File metadata

  • Download URL: od-metrics-1.0.1.tar.gz
  • Upload date:
  • Size: 22.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for od-metrics-1.0.1.tar.gz
Algorithm Hash digest
SHA256 d9816b5e21f3042b2f7653309a97fb39c6fa02ae2f58da64e88e79cefe6700f3
MD5 52718cd712738aa2458f9a2504fd4246
BLAKE2b-256 cbb3fbe12c393227cbd1ff35f75ad1e502bce0df469c94789a5f12a399c5d879

See more details on using hashes here.

File details

Details for the file od_metrics-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: od_metrics-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 19.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for od_metrics-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6a69b76a2fb43fe0e9ea4b8900e0a7138d9e7e36d544d714098e093bfbd55cde
MD5 07cdae9edbae0caa60a64fb7dab62c9a
BLAKE2b-256 dc4493c045d32c015605f4f3f2c63d7a7b83cd4d6d392c20a2b0224849f4a235

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page