Skip to main content

ODAch is a test-time-augmentation tool for pytorch 2d object detectors.

Project description

ODAch, An Object Detection TTA tool for Pytorch

ODA is a test-time-augmentation (TTA) tool for 2d object detectors.

For use in Kaggle object detection competitions.

:star: if it helps you! ;)

Install

pip install odach

Usage

See Example.ipynb.

The setup is very simple, similar to ttach.

Singlescale TTA

import odach as oda
# Declare TTA variations
tta = [oda.HorizontalFlip(), oda.VerticalFlip(), oda.Rotate90(), oda.Multiply(0.9), oda.Multiply(1.1)]

# load image
img = loadimg(impath)
# wrap model and tta
tta_model = oda.TTAWrapper(model, tta)
# Execute TTA!
boxes, scores, labels = tta_model(img)

Multiscale TTA

import odach as oda
# Declare TTA variations
tta = [oda.HorizontalFlip(), oda.VerticalFlip(), oda.Rotate90(), oda.Multiply(0.9), oda.Multiply(1.1)]
# Declare scales to tta
scale = [0.8, 0.9, 1, 1.1, 1.2]

# load image
img = loadimg(impath)
# wrap model and tta
tta_model = oda.TTAWrapper(model, tta, scale)
# Execute TTA!
boxes, scores, labels = tta_model(img)
  • The boxes are also filtered by nms(wbf default).

  • The image size should be square.

model output wrapping

  • Wrap your detection model so that the output is similar to torchvision frcnn format: [["box":[[x,y,x2,y2], [], ..], "labels": [0,1,..], "scores": [1.0, 0.8, ..]]

Thanks

nms, wbf are from https://kaggle.com/zfturbo

tta is based on https://github.com/qubvel/ttach, https://github.com/andrewekhalel/edafa/tree/master/edafa and https://www.kaggle.com/shonenkov/wbf-over-tta-single-model-efficientdet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odach-0.1.3-2010300443.tar.gz (8.0 kB view details)

Uploaded Source

File details

Details for the file odach-0.1.3-2010300443.tar.gz.

File metadata

  • Download URL: odach-0.1.3-2010300443.tar.gz
  • Upload date:
  • Size: 8.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.7

File hashes

Hashes for odach-0.1.3-2010300443.tar.gz
Algorithm Hash digest
SHA256 a6a91bb6f8801aee0d3ee0a2d7353444815222057ac804a24e5c736ce54371ae
MD5 75b73381d071336267d0ac7481405a12
BLAKE2b-256 1a73525b052e10a4d783728a5bcd97973ee35c43c4b2628880f36c21465d4f3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page