Skip to main content

Open Data Discovery Models

Project description

PyPI version

OpenDataDiscovery Models package

Has some useful tools for working with OpenDataDiscovery. Such as:

  1. Generated Python models from OpenDataDiscovery specification.
  2. API Client for working with OpenDataDiscovery.
  3. API for manual discovering data entities.

Installation

pip install odd-models

Models using example

odd-models.models package provides automatically generated Python model by OpenDataDiscovery specification. It can be used for creating data entities for uploading them into the Platform.

Code example (full code):

from oddrn_generator import PostgresqlGenerator
from odd_models.models import DataEntity, DataSet, DataSetField, DataSetFieldType, DataEntityType, Type, MetadataExtension
generator = PostgresqlGenerator(host_settings="localhost", databases="my_database", schemas="public")
DataEntity(
    oddrn=generator.get_oddrn_by_path("tables", "my_table"),
    name="my_table",
    type=DataEntityType.TABLE,
    metadata=[MetadataExtension(schema_url="https://example.com/schema.json", metadata={"env": "DEV"})],
    dataset=DataSet(
        field_list=[
            DataSetField(
                oddrn=generator.get_oddrn_by_path("tables_columns", "name"),
                name="name",
                type=DataSetFieldType(
                    type=Type.TYPE_STRING,
                    logical_type='str',
                    is_nullable=False
                ),
            )
        ]
    )
)

HTTP Client for OpenDataDiscovery


odd-models.client package provides API client for OpenDataDiscovery API. Client provides an API for working with OpenDataDiscovery Platform. It has various methods for working with data sources, data entities, management etc.

Code example(full code):

from odd_models.api_client.v2.odd_api_client import Client
from examples.postgres_models import data_entity_list

client = Client(host="http://localhost:8080")
client.auth(name="dev_aws_token", description="Token for dev AWS account data sources")
client.ingest_data_entity_list(data_entity_list)

Manual Discovery API


When there is no programmatic way to discover data sources and data entities, odd-models.discovery package provides API for manual discovery of data sources and data entities.

Code example(full code):

from odd_models.discovery import DataSource
from odd_models.discovery.data_assets import AWSLambda, S3Artifact
from odd_models.discovery.data_assets.data_asset_list import DataAssetsList

with DataSource("//cloud/aws/dev") as data_source:
    validation_lambda = AWSLambda.from_params(
        region="eu-central-1", account="0123456789", function_name="validation"
    )
    input_artifact = S3Artifact.from_url("s3://bucket/folder/test_data.csv")

    results = S3Artifact.from_url("s3://bucket/folder/test_result.csv")
    metrics = S3Artifact.from_url("s3://bucket/folder/test_metrics.json")

    input_artifact >> validation_lambda >> DataAssetsList([results, metrics])

    data_source.add_data_asset(validation_lambda)

Development

Installation

# Install dependencies
poetry install

# Activate virtual environment
poetry shell

Generating models

# Generate models. Will generate models pydantic into odd_models/models
make generate_models

# Generate api client. Will generate api client into odd_models/api_client
make generate_client

Tests

pytest .

Docker build

docker build -t odd-models .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odd_models-2.0.25.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

odd_models-2.0.25-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file odd_models-2.0.25.tar.gz.

File metadata

  • Download URL: odd_models-2.0.25.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/5.15.0-1035-azure

File hashes

Hashes for odd_models-2.0.25.tar.gz
Algorithm Hash digest
SHA256 7abb9f85b32cf49e9062ace4c2c7ae2e39f9815d67a8338446676a99f476e6d0
MD5 690c577dde1d98758aae3c48cec401f5
BLAKE2b-256 f62044c64658c840e68aec8a8e35241e74440bc2a93440f3cc2ce0a831377047

See more details on using hashes here.

File details

Details for the file odd_models-2.0.25-py3-none-any.whl.

File metadata

  • Download URL: odd_models-2.0.25-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/5.15.0-1035-azure

File hashes

Hashes for odd_models-2.0.25-py3-none-any.whl
Algorithm Hash digest
SHA256 b0465a99b3914835c906901fe16046b250bc950ed2f93e6600008bd80e972287
MD5 ac0b700f65352a2041d0010c94e896d9
BLAKE2b-256 a5552c2e9cae118bcdebea1d707536e1cc12b86bff55933a4ce8e306142f88fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page