Skip to main content

Open Data Discovery Models

Project description

PyPI version

OpenDataDiscovery Models package

Has some useful tools for working with OpenDataDiscovery. Such as:

  1. Generated Python models from OpenDataDiscovery specification.
  2. API Client for working with OpenDataDiscovery.
  3. API for manual discovering data entities.

Installation

pip install odd-models

Models using example

odd-models.models package provides automatically generated Python model by OpenDataDiscovery specification. It can be used for creating data entities for uploading them into the Platform.

Code example (full code):

from oddrn_generator import PostgresqlGenerator
from odd_models.models import DataEntity, DataSet, DataSetField, DataSetFieldType, DataEntityType, Type, MetadataExtension
generator = PostgresqlGenerator(host_settings="localhost", databases="my_database", schemas="public")
DataEntity(
    oddrn=generator.get_oddrn_by_path("tables", "my_table"),
    name="my_table",
    type=DataEntityType.TABLE,
    metadata=[MetadataExtension(schema_url="https://example.com/schema.json", metadata={"env": "DEV"})],
    dataset=DataSet(
        field_list=[
            DataSetField(
                oddrn=generator.get_oddrn_by_path("tables_columns", "name"),
                name="name",
                type=DataSetFieldType(
                    type=Type.TYPE_STRING,
                    logical_type='str',
                    is_nullable=False
                ),
            )
        ]
    )
)

HTTP Client for OpenDataDiscovery


odd-models.client package provides API client for OpenDataDiscovery API. Client provides an API for working with OpenDataDiscovery Platform. It has various methods for working with data sources, data entities, management etc.

Code example(full code):

from odd_models.api_client.v2.odd_api_client import Client
from examples.postgres_models import data_entity_list

client = Client(host="http://localhost:8080")
client.auth(name="dev_aws_token", description="Token for dev AWS account data sources")
client.ingest_data_entity_list(data_entity_list)

Manual Discovery API


When there is no programmatic way to discover data sources and data entities, odd-models.discovery package provides API for manual discovery of data sources and data entities.

Code example(full code):

from odd_models.discovery import DataSource
from odd_models.discovery.data_assets import AWSLambda, S3Artifact
from odd_models.discovery.data_assets.data_asset_list import DataAssetsList

with DataSource("//cloud/aws/dev") as data_source:
    validation_lambda = AWSLambda.from_params(
        region="eu-central-1", account="0123456789", function_name="validation"
    )
    input_artifact = S3Artifact.from_url("s3://bucket/folder/test_data.csv")

    results = S3Artifact.from_url("s3://bucket/folder/test_result.csv")
    metrics = S3Artifact.from_url("s3://bucket/folder/test_metrics.json")

    input_artifact >> validation_lambda >> DataAssetsList([results, metrics])

    data_source.add_data_asset(validation_lambda)

Development

Installation

# Install dependencies
poetry install

# Activate virtual environment
poetry shell

Generating models

# Generate models. Will generate models pydantic into odd_models/models
make generate_models

# Generate api client. Will generate api client into odd_models/api_client
make generate_client

Tests

pytest .

Docker build

docker build -t odd-models .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odd_models-2.0.27.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

odd_models-2.0.27-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file odd_models-2.0.27.tar.gz.

File metadata

  • Download URL: odd_models-2.0.27.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/5.15.0-1035-azure

File hashes

Hashes for odd_models-2.0.27.tar.gz
Algorithm Hash digest
SHA256 48138e7a96c76baf95e833d288f3201f1e78c7e6dac9c384bc7dd1c46c8c59ce
MD5 c3974792e14ad90fd4819343cb4c121c
BLAKE2b-256 6391bbd05db8f368c01199b56350a49f2e38a80c35556466220ea49a889d2d6e

See more details on using hashes here.

File details

Details for the file odd_models-2.0.27-py3-none-any.whl.

File metadata

  • Download URL: odd_models-2.0.27-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/5.15.0-1035-azure

File hashes

Hashes for odd_models-2.0.27-py3-none-any.whl
Algorithm Hash digest
SHA256 75fe6a45957a2962a593d4dee6ebafcc6e38cffe1ce21eedfea80dd3f1d4ea6e
MD5 d548c088e40e33f2c7c85277585d959b
BLAKE2b-256 7ab2ead7b32d4986e4d2a4c1add7eb444dad07cf90abb7f8a540a153341fdb73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page