Skip to main content

Open Data Discovery Models

Project description

PyPI version

OpenDataDiscovery Models package

Has some useful tools for working with OpenDataDiscovery. Such as:

  1. Generated Python models from OpenDataDiscovery specification.
  2. API Client for working with OpenDataDiscovery.
  3. API for manual discovering data entities.

Installation

pip install odd-models

Models using example

odd-models.models package provides automatically generated Python model by OpenDataDiscovery specification. It can be used for creating data entities for uploading them into the Platform.

Code example (full code):

from oddrn_generator import PostgresqlGenerator
from odd_models.models import DataEntity, DataSet, DataSetField, DataSetFieldType, DataEntityType, Type, MetadataExtension
generator = PostgresqlGenerator(host_settings="localhost", databases="my_database", schemas="public")
DataEntity(
    oddrn=generator.get_oddrn_by_path("tables", "my_table"),
    name="my_table",
    type=DataEntityType.TABLE,
    metadata=[MetadataExtension(schema_url="https://example.com/schema.json", metadata={"env": "DEV"})],
    dataset=DataSet(
        field_list=[
            DataSetField(
                oddrn=generator.get_oddrn_by_path("tables_columns", "name"),
                name="name",
                type=DataSetFieldType(
                    type=Type.TYPE_STRING,
                    logical_type='str',
                    is_nullable=False
                ),
            )
        ]
    )
)

HTTP Client for OpenDataDiscovery


odd-models.client package provides API client for OpenDataDiscovery API. Client provides an API for working with OpenDataDiscovery Platform. It has various methods for working with data sources, data entities, management etc.

Code example(full code):

from odd_models.api_client.v2.odd_api_client import Client
from examples.postgres_models import data_entity_list

client = Client(host="http://localhost:8080")
client.auth(name="dev_aws_token", description="Token for dev AWS account data sources")
client.ingest_data_entity_list(data_entity_list)

Manual Discovery API


When there is no programmatic way to discover data sources and data entities, odd-models.discovery package provides API for manual discovery of data sources and data entities.

Code example(full code):

from odd_models.discovery import DataSource
from odd_models.discovery.data_assets import AWSLambda, S3Artifact
from odd_models.discovery.data_assets.data_asset_list import DataAssetsList

with DataSource("//cloud/aws/dev") as data_source:
    validation_lambda = AWSLambda.from_params(
        region="eu-central-1", account="0123456789", function_name="validation"
    )
    input_artifact = S3Artifact.from_url("s3://bucket/folder/test_data.csv")

    results = S3Artifact.from_url("s3://bucket/folder/test_result.csv")
    metrics = S3Artifact.from_url("s3://bucket/folder/test_metrics.json")

    input_artifact >> validation_lambda >> DataAssetsList([results, metrics])

    data_source.add_data_asset(validation_lambda)

Development

Installation

# Install dependencies
poetry install

# Activate virtual environment
poetry shell

Generating models

# Generate models. Will generate models pydantic into odd_models/models
make generate_models

# Generate api client. Will generate api client into odd_models/api_client
make generate_client

Tests

pytest .

Docker build

docker build -t odd-models .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odd_models-2.0.29.tar.gz (18.0 kB view details)

Uploaded Source

Built Distribution

odd_models-2.0.29-py3-none-any.whl (27.4 kB view details)

Uploaded Python 3

File details

Details for the file odd_models-2.0.29.tar.gz.

File metadata

  • Download URL: odd_models-2.0.29.tar.gz
  • Upload date:
  • Size: 18.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/5.15.0-1037-azure

File hashes

Hashes for odd_models-2.0.29.tar.gz
Algorithm Hash digest
SHA256 72299361793cea6a760b7816648c15715e8637cb447cf02c928c9131756868c4
MD5 6056e226cc50d904c59e76c745f06e95
BLAKE2b-256 3905a1006b2bb97ec15dc074e73f0d130cf7a2835bf9a999eee855e870e51210

See more details on using hashes here.

File details

Details for the file odd_models-2.0.29-py3-none-any.whl.

File metadata

  • Download URL: odd_models-2.0.29-py3-none-any.whl
  • Upload date:
  • Size: 27.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/5.15.0-1037-azure

File hashes

Hashes for odd_models-2.0.29-py3-none-any.whl
Algorithm Hash digest
SHA256 f0c0d9309389939a8c42ca571bb6efea7d0769d5d3b4139600a73cb774ae0b6d
MD5 6247fa52d57c765276368fd691a9915f
BLAKE2b-256 1b401adc43bd6af3c2610e91542d0395e63ead9d28eafc8f9c82a3c8601e6964

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page