Skip to main content

Open Data Discovery Models

Project description

PyPI version

OpenDataDiscovery Models package

Has some useful tools for working with OpenDataDiscovery. Such as:

  1. Generated Python models from OpenDataDiscovery specification.
  2. API Client for working with OpenDataDiscovery.
  3. API for manual discovering data entities.

Installation

pip install odd-models

Models using example

odd-models.models package provides automatically generated Python model by OpenDataDiscovery specification. It can be used for creating data entities for uploading them into the Platform.

Code example (full code):

from oddrn_generator import PostgresqlGenerator
from odd_models.models import DataEntity, DataSet, DataSetField, DataSetFieldType, DataEntityType, Type, MetadataExtension
generator = PostgresqlGenerator(host_settings="localhost", databases="my_database", schemas="public")
DataEntity(
    oddrn=generator.get_oddrn_by_path("tables", "my_table"),
    name="my_table",
    type=DataEntityType.TABLE,
    metadata=[MetadataExtension(schema_url="https://example.com/schema.json", metadata={"env": "DEV"})],
    dataset=DataSet(
        field_list=[
            DataSetField(
                oddrn=generator.get_oddrn_by_path("tables_columns", "name"),
                name="name",
                type=DataSetFieldType(
                    type=Type.TYPE_STRING,
                    logical_type='str',
                    is_nullable=False
                ),
            )
        ]
    )
)

HTTP Client for OpenDataDiscovery


odd-models.client package provides API client for OpenDataDiscovery API. Client provides an API for working with OpenDataDiscovery Platform. It has various methods for working with data sources, data entities, management etc.

Code example(full code):

from examples.postgres_models import data_entity_list, generator
from odd_models.api_client.v2.odd_api_client import Client

client = Client(host="http://localhost:8080")
client.auth(name="postgres", description="Token for dev AWS account data sources")

client.create_data_source(
    data_source_oddrn=generator.get_data_source_oddrn(),
    data_source_name="Postgres data source",
)
client.ingest_data_entity_list(data_entities=data_entity_list)

Manual Discovery API


When there is no programmatic way to discover data sources and data entities, odd-models.discovery package provides API for manual discovery of data sources and data entities.

Code example(full code):

from odd_models.discovery import DataSource
from odd_models.discovery.data_assets import AWSLambda, S3Artifact
from odd_models.discovery.data_assets.data_asset_list import DataAssetsList

with DataSource("//cloud/aws/dev") as data_source:
    validation_lambda = AWSLambda.from_params(
        region="eu-central-1", account="0123456789", function_name="validation"
    )
    input_artifact = S3Artifact.from_url("s3://bucket/folder/test_data.csv")

    results = S3Artifact.from_url("s3://bucket/folder/test_result.csv")
    metrics = S3Artifact.from_url("s3://bucket/folder/test_metrics.json")

    input_artifact >> validation_lambda >> DataAssetsList([results, metrics])

    data_source.add_data_asset(validation_lambda)

Development

Installation

# Install dependencies
poetry install

# Activate virtual environment
poetry shell

Generating models

# Generate models. Will generate models pydantic into odd_models/models
make generate_models

# Generate api client. Will generate api client into odd_models/api_client
make generate_client

Tests

pytest .

Docker build

docker build -t odd-models .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odd_models-2.0.34.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

odd_models-2.0.34-py3-none-any.whl (27.5 kB view details)

Uploaded Python 3

File details

Details for the file odd_models-2.0.34.tar.gz.

File metadata

  • Download URL: odd_models-2.0.34.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/6.2.0-1015-azure

File hashes

Hashes for odd_models-2.0.34.tar.gz
Algorithm Hash digest
SHA256 0b2f0df4601a3da63ae35c6e9a887fff6321ce0c8f49d396763b7893f1326d0c
MD5 b26765c44d41316bb27a358314dac23c
BLAKE2b-256 5155c63c5af1b1355789080abb0bd4c7a2707e72e25814a12dc6875394841c39

See more details on using hashes here.

File details

Details for the file odd_models-2.0.34-py3-none-any.whl.

File metadata

  • Download URL: odd_models-2.0.34-py3-none-any.whl
  • Upload date:
  • Size: 27.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/6.2.0-1015-azure

File hashes

Hashes for odd_models-2.0.34-py3-none-any.whl
Algorithm Hash digest
SHA256 4501c01297467c45895ccd1939538923da8d7763e96722039e07eec5226d6f5c
MD5 5bb4c10063cca90f7d20c0f76d4c9cb7
BLAKE2b-256 4622d59b5f5cec6851b5b8eec6e9f8753f2e144d84a76d714f972de54eb2d2ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page