Skip to main content

Open Data Discovery Models

Project description

PyPI version

OpenDataDiscovery Models package

Has some useful tools for working with OpenDataDiscovery. Such as:

  1. Generated Python models from OpenDataDiscovery specification.
  2. API Client for working with OpenDataDiscovery.
  3. API for manual discovering data entities.

Installation

pip install odd-models

Models using example

odd-models.models package provides automatically generated Python model by OpenDataDiscovery specification. It can be used for creating data entities for uploading them into the Platform.

Code example (full code):

from oddrn_generator import PostgresqlGenerator
from odd_models.models import DataEntity, DataSet, DataSetField, DataSetFieldType, DataEntityType, Type, MetadataExtension
generator = PostgresqlGenerator(host_settings="localhost", databases="my_database", schemas="public")
DataEntity(
    oddrn=generator.get_oddrn_by_path("tables", "my_table"),
    name="my_table",
    type=DataEntityType.TABLE,
    metadata=[MetadataExtension(schema_url="https://example.com/schema.json", metadata={"env": "DEV"})],
    dataset=DataSet(
        field_list=[
            DataSetField(
                oddrn=generator.get_oddrn_by_path("tables_columns", "name"),
                name="name",
                type=DataSetFieldType(
                    type=Type.TYPE_STRING,
                    logical_type='str',
                    is_nullable=False
                ),
            )
        ]
    )
)

HTTP Client for OpenDataDiscovery


odd-models.client package provides API client for OpenDataDiscovery API. Client provides an API for working with OpenDataDiscovery Platform. It has various methods for working with data sources, data entities, management etc.

Code example(full code):

from examples.postgres_models import data_entity_list, generator
from odd_models.api_client.v2.odd_api_client import Client

client = Client(host="http://localhost:8080")
client.auth(name="postgres", description="Token for dev AWS account data sources")

client.create_data_source(
    data_source_oddrn=generator.get_data_source_oddrn(),
    data_source_name="Postgres data source",
)
client.ingest_data_entity_list(data_entities=data_entity_list)

Manual Discovery API


When there is no programmatic way to discover data sources and data entities, odd-models.discovery package provides API for manual discovery of data sources and data entities.

Code example(full code):

from odd_models.discovery import DataSource
from odd_models.discovery.data_assets import AWSLambda, S3Artifact
from odd_models.discovery.data_assets.data_asset_list import DataAssetsList

with DataSource("//cloud/aws/dev") as data_source:
    validation_lambda = AWSLambda.from_params(
        region="eu-central-1", account="0123456789", function_name="validation"
    )
    input_artifact = S3Artifact.from_url("s3://bucket/folder/test_data.csv")

    results = S3Artifact.from_url("s3://bucket/folder/test_result.csv")
    metrics = S3Artifact.from_url("s3://bucket/folder/test_metrics.json")

    input_artifact >> validation_lambda >> DataAssetsList([results, metrics])

    data_source.add_data_asset(validation_lambda)

Development

Installation

# Install dependencies
poetry install

# Activate virtual environment
poetry shell

Generating models

# Generate models. Will generate models pydantic into odd_models/models
make generate_models

# Generate api client. Will generate api client into odd_models/api_client
make generate_client

Tests

pytest .

Docker build

docker build -t odd-models .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odd_models-2.0.39.tar.gz (18.4 kB view details)

Uploaded Source

Built Distribution

odd_models-2.0.39-py3-none-any.whl (27.7 kB view details)

Uploaded Python 3

File details

Details for the file odd_models-2.0.39.tar.gz.

File metadata

  • Download URL: odd_models-2.0.39.tar.gz
  • Upload date:
  • Size: 18.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/6.2.0-1018-azure

File hashes

Hashes for odd_models-2.0.39.tar.gz
Algorithm Hash digest
SHA256 89077ff1587ce0fcbbdfcd714ae315778967d7272178bbc351c867d6b8ce3401
MD5 aa44a401114950a4d7a032e5b44c93e6
BLAKE2b-256 9deeaeedb0bb06cea3c13d88d93e57a391e8758ffd000cbc77b7bcee68ab1d24

See more details on using hashes here.

File details

Details for the file odd_models-2.0.39-py3-none-any.whl.

File metadata

  • Download URL: odd_models-2.0.39-py3-none-any.whl
  • Upload date:
  • Size: 27.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/6.2.0-1018-azure

File hashes

Hashes for odd_models-2.0.39-py3-none-any.whl
Algorithm Hash digest
SHA256 ef7e0f980b880c77cfa8c3292e044cfce640f9c938a5b4106ad345ad08eae363
MD5 65de0768b1ce003ddfe820b81fbc77aa
BLAKE2b-256 7bd050d3c5c4132e501393a175bf5510b294adf3594aef6fabbf5cdce3c77cf2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page