Skip to main content

Open Data Discovery Models

Project description

PyPI version

OpenDataDiscovery Models package

Has some useful tools for working with OpenDataDiscovery. Such as:

  1. Generated Python models from OpenDataDiscovery specification.
  2. API Client for working with OpenDataDiscovery.
  3. API for manual discovering data entities.

Installation

pip install odd-models

Models using example

odd-models.models package provides automatically generated Python model by OpenDataDiscovery specification. It can be used for creating data entities for uploading them into the Platform.

Code example (full code):

from oddrn_generator import PostgresqlGenerator
from odd_models.models import DataEntity, DataSet, DataSetField, DataSetFieldType, DataEntityType, Type, MetadataExtension
generator = PostgresqlGenerator(host_settings="localhost", databases="my_database", schemas="public")
DataEntity(
    oddrn=generator.get_oddrn_by_path("tables", "my_table"),
    name="my_table",
    type=DataEntityType.TABLE,
    metadata=[MetadataExtension(schema_url="https://example.com/schema.json", metadata={"env": "DEV"})],
    dataset=DataSet(
        field_list=[
            DataSetField(
                oddrn=generator.get_oddrn_by_path("tables_columns", "name"),
                name="name",
                type=DataSetFieldType(
                    type=Type.TYPE_STRING,
                    logical_type='str',
                    is_nullable=False
                ),
            )
        ]
    )
)

HTTP Client for OpenDataDiscovery


odd-models.client package provides API client for OpenDataDiscovery API. Client provides an API for working with OpenDataDiscovery Platform. It has various methods for working with data sources, data entities, management etc.

Code example(full code):

from examples.postgres_models import data_entity_list, generator
from odd_models.api_client.v2.odd_api_client import Client

client = Client(host="http://localhost:8080")
client.auth(name="postgres", description="Token for dev AWS account data sources")

client.create_data_source(
    data_source_oddrn=generator.get_data_source_oddrn(),
    data_source_name="Postgres data source",
)
client.ingest_data_entity_list(data_entities=data_entity_list)

Manual Discovery API


When there is no programmatic way to discover data sources and data entities, odd-models.discovery package provides API for manual discovery of data sources and data entities.

Code example(full code):

from odd_models.discovery import DataSource
from odd_models.discovery.data_assets import AWSLambda, S3Artifact
from odd_models.discovery.data_assets.data_asset_list import DataAssetsList

with DataSource("//cloud/aws/dev") as data_source:
    validation_lambda = AWSLambda.from_params(
        region="eu-central-1", account="0123456789", function_name="validation"
    )
    input_artifact = S3Artifact.from_url("s3://bucket/folder/test_data.csv")

    results = S3Artifact.from_url("s3://bucket/folder/test_result.csv")
    metrics = S3Artifact.from_url("s3://bucket/folder/test_metrics.json")

    input_artifact >> validation_lambda >> DataAssetsList([results, metrics])

    data_source.add_data_asset(validation_lambda)

Development

Installation

# Install dependencies
poetry install

# Activate virtual environment
poetry shell

Generating models

# Generate models. Will generate models pydantic into odd_models/models
make generate_models

# Generate api client. Will generate api client into odd_models/api_client
make generate_client

Tests

pytest .

Docker build

docker build -t odd-models .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odd_models-2.0.47.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

odd_models-2.0.47-py3-none-any.whl (27.8 kB view details)

Uploaded Python 3

File details

Details for the file odd_models-2.0.47.tar.gz.

File metadata

  • Download URL: odd_models-2.0.47.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/6.5.0-1018-azure

File hashes

Hashes for odd_models-2.0.47.tar.gz
Algorithm Hash digest
SHA256 c22ebaa216e9591e1cd1b1bb0f9d701f5dc36088b97f537cfef50a4853ae6060
MD5 12b528c227a6ccd042d363a039342da9
BLAKE2b-256 68de829d33d4808e29f89326e875685f165ac8a64eb3dd27f95f92be2a2f8790

See more details on using hashes here.

File details

Details for the file odd_models-2.0.47-py3-none-any.whl.

File metadata

  • Download URL: odd_models-2.0.47-py3-none-any.whl
  • Upload date:
  • Size: 27.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/6.5.0-1018-azure

File hashes

Hashes for odd_models-2.0.47-py3-none-any.whl
Algorithm Hash digest
SHA256 fe93cfc1ddd99b9f6307040df5b9f1af862bde643efa43a6146e6f65cba11f5d
MD5 99f96d5a5c287b3405c8c0a405e75e66
BLAKE2b-256 6425622e06352ff5ee841aa01d87317457d421a7ee844237c93fdb5caa34504a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page