Skip to main content

Open Data Discovery Models

Project description

PyPI version

OpenDataDiscovery Models package

Has some useful tools for working with OpenDataDiscovery. Such as:

  1. Generated Python models from OpenDataDiscovery specification.
  2. API Client for working with OpenDataDiscovery.
  3. API for manual discovering data entities.

Installation

pip install odd-models

Models using example

odd-models.models package provides automatically generated Python model by OpenDataDiscovery specification. It can be used for creating data entities for uploading them into the Platform.

Code example (full code):

from oddrn_generator import PostgresqlGenerator
from odd_models.models import DataEntity, DataSet, DataSetField, DataSetFieldType, DataEntityType, Type, MetadataExtension
generator = PostgresqlGenerator(host_settings="localhost", databases="my_database", schemas="public")
DataEntity(
    oddrn=generator.get_oddrn_by_path("tables", "my_table"),
    name="my_table",
    type=DataEntityType.TABLE,
    metadata=[MetadataExtension(schema_url="https://example.com/schema.json", metadata={"env": "DEV"})],
    dataset=DataSet(
        field_list=[
            DataSetField(
                oddrn=generator.get_oddrn_by_path("tables_columns", "name"),
                name="name",
                type=DataSetFieldType(
                    type=Type.TYPE_STRING,
                    logical_type='str',
                    is_nullable=False
                ),
            )
        ]
    )
)

HTTP Client for OpenDataDiscovery


odd-models.client package provides API client for OpenDataDiscovery API. Client provides an API for working with OpenDataDiscovery Platform. It has various methods for working with data sources, data entities, management etc.

Code example(full code):

from examples.postgres_models import data_entity_list, generator
from odd_models.api_client.v2.odd_api_client import Client

client = Client(host="http://localhost:8080")
client.auth(name="postgres", description="Token for dev AWS account data sources")

client.create_data_source(
    data_source_oddrn=generator.get_data_source_oddrn(),
    data_source_name="Postgres data source",
)
client.ingest_data_entity_list(data_entities=data_entity_list)

Manual Discovery API


When there is no programmatic way to discover data sources and data entities, odd-models.discovery package provides API for manual discovery of data sources and data entities.

Code example(full code):

from odd_models.discovery import DataSource
from odd_models.discovery.data_assets import AWSLambda, S3Artifact
from odd_models.discovery.data_assets.data_asset_list import DataAssetsList

with DataSource("//cloud/aws/dev") as data_source:
    validation_lambda = AWSLambda.from_params(
        region="eu-central-1", account="0123456789", function_name="validation"
    )
    input_artifact = S3Artifact.from_url("s3://bucket/folder/test_data.csv")

    results = S3Artifact.from_url("s3://bucket/folder/test_result.csv")
    metrics = S3Artifact.from_url("s3://bucket/folder/test_metrics.json")

    input_artifact >> validation_lambda >> DataAssetsList([results, metrics])

    data_source.add_data_asset(validation_lambda)

Development

Installation

# Install dependencies
poetry install

# Activate virtual environment
poetry shell

Generating models

# Generate models. Will generate models pydantic into odd_models/models
make generate_models

# Generate api client. Will generate api client into odd_models/api_client
make generate_client

Tests

pytest .

Docker build

docker build -t odd-models .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odd_models-2.0.50.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

odd_models-2.0.50-py3-none-any.whl (27.8 kB view details)

Uploaded Python 3

File details

Details for the file odd_models-2.0.50.tar.gz.

File metadata

  • Download URL: odd_models-2.0.50.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/6.5.0-1018-azure

File hashes

Hashes for odd_models-2.0.50.tar.gz
Algorithm Hash digest
SHA256 c9645f417278288ac22ab1a18f3c07f63f3c5f3df6ed4b1492c0d1380fce4be6
MD5 457d359cac30ef9e57f10512b1095241
BLAKE2b-256 d9ff02057c0a6b0dec799cc88cd2a1c1eed81176121460f63d6857a4bc96a167

See more details on using hashes here.

File details

Details for the file odd_models-2.0.50-py3-none-any.whl.

File metadata

  • Download URL: odd_models-2.0.50-py3-none-any.whl
  • Upload date:
  • Size: 27.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.9.16 Linux/6.5.0-1018-azure

File hashes

Hashes for odd_models-2.0.50-py3-none-any.whl
Algorithm Hash digest
SHA256 cd6a17c561b043e45c4c08bd6eadce0e069124245823677641a254774fcd745c
MD5 727e72682de6224282b0cc47e327a308
BLAKE2b-256 291f7bef9ea6a9ef56ee8c608d6429d32d8daf7c048fb9868deabdcc2346257a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page