Skip to main content

A tool for object detection, labeling and visualization

Reason this release was yanked:

inconvenient name for labels output chart

Project description

output

ODLabel

ODLabel (Open Dictionary Labeler) is a powerful tool for zero-shot object detection, labeling and visualization. It provides an intuitive graphical user interface for labeling objects in images using the YOLO-World model and supports various output formats such as YOLO, COCO, CSV, and XML.

Features

  • Select a YOLO-World model for object detection
  • Choose an images folder for labeling
  • Specify output directory for annotated data
  • Define object categories for detection
  • Use Slicing Adaptive Inference (SAHI) for improved detection for small objects
  • Select device type (CPU or GPU) for inference
  • Customize train/validation split ratio
  • Adjust confidence level and non-maximum suppression (IoU) threshold
  • Visualize input image statistics and output detection results

Installation

You can install ODLabel from PyPI using pip:

pip install odlabel

Usage

To launch the ODLabel application, run the following command:

odlabel
  1. Select a YOLO-World model file (.pt) for object detection.
  2. Choose the folder containing the images you want to label.
  3. Specify the output directory where the labeled data will be saved.
  4. Enter the object categories you want to detect, separated by commas.
  5. Configure additional options such as SAHI, device type, output format, train/validation split, confidence level, and NMS threshold.
  6. Click the "Start" button to begin the labeling process.
  7. Monitor the progress and view the detection results in the application.

Model

Model Type mAP mAP50 mAP75 Model
yolov8s-world 37.4 52.0 40.6 Download
yolov8s-worldv2 37.7 52.2 41.0 Download
yolov8m-world 42.0 57.0 45.6 Download
yolov8m-worldv2 43.0 58.4 46.8 Download
yolov8l-world 45.7 61.3 49.8 Download
yolov8l-worldv2 45.8 61.3 49.8 Download
yolov8x-world 47.0 63.0 51.2 Download
yolov8x-worldv2 47.1 62.8 51.4 Download

GUI Figures and Dashboard

ODLabel provides a comprehensive dashboard with various figures and visualizations to assist in analyzing the input image data and object detection results. The dashboard is displayed within the graphical user interface (GUI) of the application, allowing for interactive exploration and understanding of the data.

The following figures are available in the dashboard:

  1. Format and Instances Chart: This chart combines two visualizations in one figure:

    • A bar chart displaying the total number of input images.
    • A bar chart showing the distribution of image file formats (e.g., .jpg, .jpeg, .png, jfif).
  2. Image Resolution Distribution: A histogram that illustrates the distribution of image resolutions across the input dataset. The x-axis represents the image width, and the bars show the frequency of images within each resolution bin.

  3. Image Quality: A bar chart depicting the number of images falling into different quality categories:

    • Blurred images
    • Grayscale images
    • Black and white images
    • Corrupted or invalid images
  4. Color Space Distribution: A 3D scatter plot that visualizes the color space distribution of the input images. Each point in the plot represents a unique color space, with its position determined by the mean values of the red, green, and blue channels. The size of the points indicates the frequency of that particular color space in the dataset.

  5. Detected Object Count: A bar chart displaying the count of detected objects for each class. The first bar represents the total number of input images, while the subsequent bars show the number of instances for each object class detected across the dataset.

  6. Detection Confidence Histogram: A histogram that illustrates the distribution of detection confidence scores. The x-axis represents the confidence level, and the bars show the frequency of detections within each confidence bin.

  7. Labelism: Bounding Boxes: A chart that visualizes the bounding boxes of detected objects. Each bounding box is represented by a rectangle, with the color intensity indicating the degree of overlap with other bounding boxes. Areas with darker colors signify a higher concentration of overlapping bounding boxes.

  8. Heatmap of Detection: A heatmap visualization that showcases the spatial distribution of detected objects within the image space. The heatmap uses different colors to indicate the density of detections at various locations, with brighter colors representing higher concentrations.

These figures provide valuable insights into the input image data and the object detection results, enabling users to identify potential issues, patterns, and areas for further analysis or improvement. The dashboard serves as a powerful tool for exploring and understanding the data, facilitating informed decision-making and enhancing the overall object detection and labeling workflow.

Update

You can upgrade ODLabel using pip:

pip install --upgrade odlabel

License

This project is licensed under the GNU Affero General Public License v3.0 (AGPL-3.0). See the LICENSE file for details.

Contributing

Contributions are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request on the GitHub repository.

Acknowledgements

ODLabel is built using the following open-source libraries:

ODLabel runs locally on your machine and does not collect or send any data externally. Your data remains private and secure within your local environment.

Contact

For any questions or inquiries, please contact the maintainer at - ZiadAlgrafi@gmail.com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odlabel-0.7.26.2.tar.gz (32.3 kB view details)

Uploaded Source

Built Distribution

odlabel-0.7.26.2-py3-none-any.whl (32.1 kB view details)

Uploaded Python 3

File details

Details for the file odlabel-0.7.26.2.tar.gz.

File metadata

  • Download URL: odlabel-0.7.26.2.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for odlabel-0.7.26.2.tar.gz
Algorithm Hash digest
SHA256 10d19ae9926ff3b88899cf18bee56d52b9d26d3092b5621782d4ce22a6523e78
MD5 13fc980e0727bd61f4dac22769d452dc
BLAKE2b-256 778f2df2d783f1713cbf82e0c949fc2059e04ab7f586f7754badddf3c5372011

See more details on using hashes here.

File details

Details for the file odlabel-0.7.26.2-py3-none-any.whl.

File metadata

  • Download URL: odlabel-0.7.26.2-py3-none-any.whl
  • Upload date:
  • Size: 32.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for odlabel-0.7.26.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a86ca8dea45bafc2284d195ce884ce25913eea8de1f530c97f4b0c81b6191b5d
MD5 07a472ecd02615a9edc02d2b69336eb1
BLAKE2b-256 0a2ab31ae392e86223457240e766cf1e4a06d08b0774d1aff21eecf5aaac57e5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page