Skip to main content

A python library for object detection neural networks.

Project description

About

We provide a set of object detection neural network training and evaluation functions.
We currently support Faster-RCNN, SSD and YOLO(v5). An infant funuds image object detection application is provided. This application combined the general-purposed object dection and domain-specific morphological rules. The rule-filtering and ROP zone segmentatin functions are provided in the annotation class of the fundus.py file.
NOTE: Faster-RCNN and SSD require tf 1.x. SSD can run under tf 2.x using 'import tensorflow.compat.v1 as tf'. FRCNN may be painful to get running. We recommend using the latest YOLO v5.

Cite our paper if you use the odn package or the dataset:

"Morphological Rule-Constrained Object Detection of Key Structures in Infant Fundus Image", IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023

Credit

The following 3rd-party packages are used:

  1. The Faster-RCNN module is based on https://github.com/kentaroy47/frcnn-from-scratch-with-keras. We have updated the code according to the latest keras API change (K..image_dim_ordering () -> K.image_data_format()).
  2. Data augmentation package (https://github.com/Paperspace/DataAugmentationForObjectDetection).
  3. SSD (Single Shot MultiBox Detector) by tensorflow. We took lots of efforts to integrate tensorflow's objection detection and slim source, mainly revising the relative importing. https://github.com/tensorflow/models/research/object_detection and https://github.com/tensorflow/models/research/slim
  4. The darkflow framework (https://github.com/thtrieu/darkflow)
  5. The pytorch_yolov5 project (https://github.com/ultralytics/yolov5). The main changes are in utils/datasets.py (we added filelist.txt support) and utils/plots (we added fundus_zones()).

Install

pip install torch==1.8.2 torchvision==0.9.2 torchaudio===0.8.2 --extra-index-url https://download.pytorch.org/whl/lts/1.8/cu111 (use LTS version)       
pip install tensorflow-gpu == 1.14.0  
pip install tf-slim 
pip install odn

For tf_ssd, we need to add odn\tf_ssd\protoc-3.4.0-win32\bin to PATH, then run: cd tf_ssd
protoc object_detection/protos/*.proto --python_out=.

How to use - FRCNN

  1. Output images with annotations

    from odn.fundus import dataset

    dataset.synthesize_anno(label_file = '../data/fundus/all_labels.csv', dir_images = '../data/fundus/images/', dir_output = '../data/fundus/ground_truth/',
    verbose = True, display = 5 )

    The labe file should be in this format:

     seq,class,cx,cy,filename,height,laterality,width,xmax,xmin,ymax,ymin
     259,Macula,384,293,00569c080bf51c7f182cbe4c76f1823a.jpg,480,L002,720,436,332,345,241
     668,OpticDisk,191,275,00569c080bf51c7f182cbe4c76f1823a.jpg,480,L002,720,224,158,308,242
    

    The generated image is like this:

  2. Split dataset

    dataset.split(label_file = '../data/fundus/all_labels.csv', dir_images = '../data/fundus/images/', train_output = '../data/fundus/train.txt', test_output = '../data/fundus/test.txt', test_size = 0.2, verbose = True)

  3. Train a new model by transfer learning uing pre-trained PRN weigths

    cmd and cd to the the odn folder:

    python -m odn.train_frcnn -o simple -p ../../data/fundus/train.txt --network vgg16 --rpn ./models/rpn/pretrained_rpn_vgg_model.36-1.42.hdf5 --hf true --num_epochs 20

    or if using github source,

    python train_frcnn.py -o simple -p ../../data/fundus/train.txt --network vgg16 --rpn ./models/rpn/pretrained_rpn_vgg_model.36-1.42.hdf5 --hf true --num_epochs 20

    from odn import utils

    utils.plot_training_curves(input_file = '../src/odn/training_log.txt', output_file = '../src/odn/training_curves.png')

  4. Test

    python -m odn.test_frcnn --network vgg16 -p ../../data/fundus/test_public.txt --load models/vgg16/19e.hdf5 --num_rois 32 --write

    or if using github source,

    python test_frcnn.py --network vgg16 -p ../../data/fundus/test_public.txt --load models/vgg16/19e.hdf5 --num_rois 32 --write

    A candidate_rois.txt with all candidate ROIs will be generated.

  5. ROI filtering

    from odn.fundus import annotation, dataset

    annotation.rule_filter_rois(input_file = '../src/odn/candidate_rois.txt', output_file = '../src/odn/rois.txt', verbose = True)

    dataset.synthesize_anno('../src/odn/rois.txt', dir_images = '../data/fundus/images_public/', dir_output = '../data/fundus/odn_19e/', drawzones = True, # set true if you want to draw ROP zones
    verbose = True, display = 5 )

    or output annotated images in place:

    dataset.synthesize_anno('../src/odn/rois.txt', dir_images = '../data/fundus/images_public/', dir_output = 'inplace', drawzones = True, verbose = True, suffix = '_FRCNN', # inplace image name suffix display = 5 )

  6. Evaluation

    6.1 Output a single comparison plot

    from odn import metrics

    metrics.fundus_compare_metrics(gt = '../data/fundus/all_labels.csv', pred = '../src/odn/rois.txt', output_file = './comparison_with_metrics.jpg', image_dirs = [ '../data/fundus/ground_truth_public', '../data/fundus/odn_19e_raw',
    '../data/fundus/odn_19e_naive', '../data/fundus/odn_19e'], verbose = True )

    6.2 Output image-wise comparison plot

    fundus_compare_metrics_separate(input_file = '../src/odn/rois.txt', output_dir = './comparison_separate/', image_dirs = [ '../data/fundus/ground_truth_public', '../data/fundus/odn_19e_raw', '../data/fundus/odn_19e'], verbose = True )

    6.3 Only output comparison results that are differents between different detection algorithms

    fundus_compare_metrics_html(gt = '../data/fundus/all_labels.csv', pred = '../src/odn/rois_naive.txt')

    fundus_compare_metrics(gt = '../data/fundus/all_labels.csv', pred = '../src/odn/rois.txt', output_file = './comparison_with_metrics_diff.jpg', image_dirs = [ '../data/fundus/ground_truth_public', '../data/fundus/odn_19e_raw',
    '../data/fundus/odn_19e_naive', '../data/fundus/odn_19e'], image_subset = image_subset, verbose = True )

How to use - TF-SSD

  1. Follow our notebook (8.4 Object Detection - Fundus - TF-SSD ) to build the tfrecord.

  2. Training

    cmd > cd to '/odn/tf_ssd' > run:

    python train.py --logtostderr --train_dir=training --pipeline_config_path=ssd_mobilenet_v1_fundus.config

    To use a pretrained model, revise ssd_mobilenet_v1_fundus.config:

     fine_tune_checkpoint: "../tf/export/model.ckpt"
    

    If the training runs correctly, should output something like:

    INFO:tensorflow:global step 1906: loss = 4.3498 (3.848 sec/step)
    I0610 11:49:51.364413 13848 learning.py:512] global step 1906: loss = 4.3498 (3.848 sec/step)
    INFO:tensorflow:global step 1907: loss = 3.9057 (3.903 sec/step)
    I0610 11:49:55.267028 13848 learning.py:512] global step 1907: loss = 3.9057 (3.903 sec/step)
    INFO:tensorflow:global step 1908: loss = 3.4026 (3.856 sec/step)
  1. Export model as tf graph

    python export_inference_graph.py --input_type image_tensor --pipeline_config_path ssd_mobilenet_v1_fundus.config --trained_checkpoint_prefix training/model.ckpt-1945 --output_directory ./export2002206

  2. Prediction

    from odn.fundus import annotation 

    # get image file list to predict
    FILES = utils.get_all_images_in_dir(folder = '../data/fundus/images_public/') 

    # load tf graph model
    detection_graph, category_index = annotation.load_tf_graph(ckpt_path = '../src/odn/tf_ssd/export/frozen_inference_graph.pb',
                    label_path = '../src/odn/tf_ssd/fundus_label_map.pbtxt', 
                    num_classes = 2)

    # object detection
    annotation.tf_batch_object_detection(detection_graph, category_index, FILES, 
                                    '../data/fundus/ssd/', 
                                    '../data/fundus/ssd_202206.txt', 
                                    new_img_width = 300, fontsize = 12)


    Or output annotated images in place:

    annotation.tf_batch_object_detection(detection_graph, category_index, FILES, 
                                  'inplace', 
                                  '../data/fundus/ssd_202206.txt',                        
                                  new_img_width = 900, fontsize = None, suffix = '_SSD')

The annotated images will be generated in the ssd folder. A sample image is as follows,

We draw ROP Zone I, Posterior Zone II and Zone II.

How to use - Darflow Yolo

  1. Prerequisie: Install darkflow from source
    src\odn\darkflow_yolo>pip install -e .
        Obtaining file:///C:/Users/eleve/Documents/codex/py/keras/8.%20Object%20Detection/github/src/odn/darkflow_yolo
        Installing collected packages: darkflow
        Running setup.py develop for darkflow
        Successfully installed darkflow
  1. Load yolo model and make prediction
    from odn import dark_yolo​

    tfnet = dark_yolo.load_tfnet(options = {
            'model': '../src/odn/darkflow_yolo/cfg/yolo.cfg', # 'bin/yolov1.cfg',
            'load': '../src/odn/darkflow_yolo/bin/yolov2.weights', # 'bin/yolov1.weights',
            'config': '../src/odn/darkflow_yolo/cfg/',
            'threshold': 0.3,
            'gpu': 0.7
        })

    yolo.predict(tfnet, '../data/generic/image2.jpg')

How to use - pytorch YOLO

  1. Train by transfer learning

    cd to src\odn\torch_yolo, run (download the yolov5m pretrained model first):

    python train.py --data data/fundus.yaml --cfg models/yolov5m.yaml --weights models/yolov5m.pt --batch-size 16 --epochs 30 --img 640

    The training results and models are saved to runs/train/exp/

  2. Predict a folder

    python detect.py --source ../../../data/fundus/test --weights runs/train/exp/weights/best.pt

  3. Inplace prediction (i.e., )

    from odn.fundus import annotation %matplotlib inline

    annotation.torch_batch_object_detection(model_path = '../src/odn/torch_yolo/runs/train/exp15/weights/best.pt', input_path = 'filelist.txt', conf_thres=0.3, iou_thres=0.5, max_det=2, anno_pil = True, colors = [(200,100,100),(55,125,125)], suffix = '_YOLO5', display = True, verbose = False )

    Inside torch_batch_object_detection(), we have extended the original torch yolov5 with these functions to support in-place prediction:

     datasets.py - LoadImages(input_path) - input_path can now be a filelist.txt of image paths   
     plots.py - Annotation.fundus_zones(self, cx, cy, radius) - draw zone 1, posterior zone 2 and zone 2
    

How to use - Camera App

from odn import camera

camera.realtime_object_detection(ckpt_path = '../src/odn/models/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb',
                label_path = '../src/odn/models/mscoco_label_map.pbtxt', 
                num_classes = 90)

How to use - tkInter GUI

python -m odn.gui
1. 设置目录:设置包含眼底照片的目标目录  
2. 检索图片:默认将按照后缀名规则(*.jpg,*.png)搜素该目录下所有图片(包括子目录)  
3. 列表将列出所有图片。选中某个图片,可以“预览”或“删除”  
4. "FRCNN","SSD","YOLO5"点击其中一个将弹出对话框,点击"Start | 开始"将使用响应的目标检测模型对所有图片进行处理。其中,FRCNN需要额外下载19e.h5模型文件(大小500MB),SSD和YOLO5的模型已经打包在安装文件中。    
5. 处理完毕后,将在图片原位置生成后缀"_FRCNN"、"_SSD"、"_YOLO5"的文件,包含检测到的关键生理结构及眼底分区

Jupyter notebooks

Under /notebooks, we provide several examples for both general-purposed and fundus image object detection.

Dataset

data/fundus/images : a fundus image set in courtesy of SZEH (Shenzhen Eye Hospital)
data/fundus/ground_truth_public : images with ground truth annotations
data/fundus/frcnn_19e_zones : object detection results by FRCNN (trained 19 epochs)
data/fundus/ssd : object detection results by SSD (Single Shot MultiBox Detector)

Deployment

After training, you will get a keras h5 model file. You can further convert it to tflite format, or tfjs format.
Then you can deploy on mobile device or browser-based apps.

Functions added since first publication

One-exam zone segmentation:
odn.fundus.annotation.torch_batch_object_detection_for_one_exam()

The basic idea is to use images with both optic disc and macula to get the zone 1 radius (left). Later use this radius for images of the same exam only with the optic disc (right).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odn-0.4.6.tar.gz (62.5 MB view details)

Uploaded Source

Built Distribution

odn-0.4.6-py3-none-any.whl (62.9 MB view details)

Uploaded Python 3

File details

Details for the file odn-0.4.6.tar.gz.

File metadata

  • Download URL: odn-0.4.6.tar.gz
  • Upload date:
  • Size: 62.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for odn-0.4.6.tar.gz
Algorithm Hash digest
SHA256 52c0c50b7592918bc2799e0a30dcb8d06a9ade39c9251d7fcc12084d19a25419
MD5 cb78868f5355afcff291497bb79f5b5e
BLAKE2b-256 e0e7f67d385cc4e29fe7235aaa7471582c92c5bff220b7b189f28d4678852ad1

See more details on using hashes here.

File details

Details for the file odn-0.4.6-py3-none-any.whl.

File metadata

  • Download URL: odn-0.4.6-py3-none-any.whl
  • Upload date:
  • Size: 62.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for odn-0.4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 0ab0001dbef43335b6646adc698ff92fcab04695ed8c18536fc2e30fafac594a
MD5 a111a6fa982a83504edf9ebb51b41b91
BLAKE2b-256 8d43709a6d457ecd3a7171a5dd5e26b192308141c41061fd352517073e85af7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page