Skip to main content

Implementations of common offline policy evaluation methods.

Project description

Offline policy evaluation

PyPI version

Implementations and examples of common offline policy evaluation methods in Python.

Installation

pip install offline-evaluation

Usage

from ope.methods import doubly_robust

Get some historical logs generated by a previous policy:

df = pd.DataFrame([
	{"context": {"p_fraud": 0.08}, "action": "blocked", "action_prob": 0.90, "reward": 0},
	{"context": {"p_fraud": 0.03}, "action": "allowed", "action_prob": 0.90, "reward": 20},
	{"context": {"p_fraud": 0.02}, "action": "allowed", "action_prob": 0.90, "reward": 10},
	{"context": {"p_fraud": 0.01}, "action": "allowed", "action_prob": 0.90, "reward": 20},     
	{"context": {"p_fraud": 0.09}, "action": "allowed", "action_prob": 0.10, "reward": -20},
	{"context": {"p_fraud": 0.40}, "action": "allowed", "action_prob": 0.10, "reward": -10},
 ])

Define a function that computes P(action | context) under the new policy:

def action_probabilities(context):
    epsilon = 0.10
    if context["p_fraud"] > 0.10:
        return {"allowed": epsilon, "blocked": 1 - epsilon}    
    return {"allowed": 1 - epsilon, "blocked": epsilon}

Conduct the evaluation:

doubly_robust.evaluate(df, action_probabilities)
> {'expected_reward_logging_policy': 3.33, 'expected_reward_new_policy': -28.47}

This means the new policy is significantly worse than the logging policy. Instead of A/B testing this new policy online, it would be better to test some other policies offline first.

See examples for more detailed tutorials.

Supported methods

  • <input type="checkbox" checked="" disabled="" /> Inverse propensity scoring
  • <input type="checkbox" checked="" disabled="" /> Direct method
  • <input type="checkbox" checked="" disabled="" /> Doubly robust (paper)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for offline-evaluation, version 0.0.5
Filename, size File type Python version Upload date Hashes
Filename, size offline-evaluation-0.0.5.tar.gz (4.1 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page