Skip to main content

Tool to convert temperatures OH*(6-2) between two sets of Einstein A coefficients.

Project description

oh_einstein_temp_convert

oh_einstein_temp_convert is a Python package which translates temperatures originally calculated from OH*(6-2) transiton spectra using a certain set of Einstein coefficients to a new set of Einstein coefficients with no need of the original data.

Author

Rowan Dayton-Oxland University of Southampton Github

Installation

Use the package manager pip to install oh_einstein_temp_convert.

pip install oh_einstein_temp_convert

Requirements

  • Python >= 3.10
  • numpy, pandas
  • OS independent

Einstein A coefficient sources

Ain (int) - Original Einstein coefficient source index (see table)
Aout (int) - Desired output Einstein coefficient source index (see table)

Einstein A Source Index
Mies et al., 1974 0
Loo and Groenenboom, 2008 1
Langhoff et al., 1986 2
Goldman et al., 1998 3
Turnbull and Lowe, 1989 4

Usage

import oh_einstein_temp_convert as oh

Temperatures = []  # List of temperatures

# Temperatures originally calculated from e.g. Mies et al., 1974 coefficients
Ain_index = 0  # Choose index of input temperatures
# Output temperatures calculated from e.g. Loo and Groenenboom, 2008 coefficients. 
Aout_index = 1  # Choose index of output temperatures

# returns list of converted temperatures
Result = oh.convert_temperatures(Temperatures, Ain_index, Aout_index)

Algorithm

  • Get the original temperature and original Einstein coefficient set
  • Calculate $ln(\frac{I}{Ain \cdot 2(2J' + 1)})$ and add a correction term for the new Einstein coefficient set $ln(\frac{Ain}{Aout})$ for each $F(J')$ value in the OH*(6-2) P-branch.
  • Plot the corrected $ln(\frac{I}{Aout \cdot 2(2J' + 1)})$ term against $F(J')$
  • Extract the output temperature from the gradient of the line by linear fit

This comes from the following equation; $$ ln(\frac{I}{A \cdot 2(2J' + 1)}) = \frac{-(h c)}{(k T)} * F(J') + ln(\frac{N}{QR}) $$

$I$ The spectral line intensity $A$ The Einstein A coefficient $J'$ The rotational quantum state $h$ The Planck constant $c$ The speed of light in the vacuum $k$ The Boltzmann constant $T$ The rotational temperature $F(J')$ The rotational energy term $ln(\frac{N}{QR})$ The partition function (constant for any single branch in the spectrum)

Contributing

Pull requests are welcome on Github. For major changes, please open an issue first to discuss what you would like to change.

References

Einstein and other quantum coefficients, and general inspiration from the Synthetic Hydroxyl Spectrum Generator Sigernes, F., Shumilov, N., Deehr, C.S., Nielsen, K.P., Svenøe, T., and Havnes, O., The Hydroxyl rotational temperature record from the Auroral Station in Adventdalen, Svalbard (78°N, 15°E) , Journal of Geophysical Research, Vol 108 (A9), 1342, doi 1029/2001JA009023, 2003.

Holmen, S., Trends and variability of polar mesopause region temperatures attributed to atmospheric dynamics and solar activity, PhD Thesis, UiT The Arctic University of Norway, 2016.

Mies, F. H. (1974). Calculated vibrational transition probabilities of OH($X^2\Pi$). Journal of Molecular Spectroscopy,53(2), 150–188.

Mark P. J. van der Loo, Gerrit C. Groenenboom (2008) Theoretical transition probabilities for the OH Meinel system. J. Chem. Phys. 21 March 2007; 126 (11): 114314.

Langhoff, S. R., Werner, H. J., & Rosmus, P. (1986). Theoretical transition probabilities for the OH Meinel system. Journal of Molecular Spectroscopy, 118(2), 507-529

Goldman, A., Schoenfeld, W. G., Goorvitch, D., Chackerian, J., C., Dothe, H., Mélen, F., … Selby, J. E. A. (1998). Updated line parameters for $OH X^2II-X^2II$ ($\upsilon″\upsilon’$) transitions. Journal of Quantitative Spectroscopy and Radiative Transfer, 59(3–5), 453–469.

D.N. Turnbull, R.P. Lowe, New hydroxyl transition probabilities and their importance in airglow studies, Planetary and Space Science, 37(6), 1989, 723-738, 0032-0633

License

GNU GPLv3.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oh_einstein_temp_convert-1.0.0.tar.gz (22.1 kB view details)

Uploaded Source

Built Distribution

oh_einstein_temp_convert-1.0.0-py3-none-any.whl (21.5 kB view details)

Uploaded Python 3

File details

Details for the file oh_einstein_temp_convert-1.0.0.tar.gz.

File metadata

File hashes

Hashes for oh_einstein_temp_convert-1.0.0.tar.gz
Algorithm Hash digest
SHA256 fece72c665e69dbeb79e8c56ded4c38378e3785e4c09cc45286777354ec83159
MD5 c0f25c6f172c8776c653f28b6e5cbe8b
BLAKE2b-256 2247fc4f5bdf0bff3db89f1d772bf065385ac44804571e76b69362a1a9633bec

See more details on using hashes here.

File details

Details for the file oh_einstein_temp_convert-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for oh_einstein_temp_convert-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5ba33a41d4464bc69624e05e0258b038e126490202467876f63108a46e416e8a
MD5 a71bd9c3f1f792abfe3c56755cf8d30f
BLAKE2b-256 9c0cc146150f66d5594e8a419c82ece561a22ea03aec5e0715c0ddde946c5a21

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page