One-hot multinomial logisitc regression
Project description
One-hot multinomial logistic regression
========================
Quick Start
-----------
Installation
~~~~~~~~~~~~
- To install ``ohmlr`` on your computer using ``pip``, execute
.. code-block:: sh
pip install ohmlr
- Test out ``ohmlr`` in Python:
.. code-block:: python
import ohmlr
import numpy as np
# create model and generate data
n_features = 16
n_x_classes = np.random.randint(2, 10, size=n_features)
n_y_classes = 8
model = ohmlr.ohmlr().random(n_features, n_x_classes, n_y_classes)
x, y = model.generate_data(n_samples=1000)
# fit and score model
model.fit(x, y)
print(model.score(x, y))
Links
-----
Online documentation:
http://joepatmckenna.github.io/ohmlr
Source code repository:
https://github.com/joepatmckenna/ohmlr
Python package index:
https://pypi.python.org/pypi/ohmlr
========================
Quick Start
-----------
Installation
~~~~~~~~~~~~
- To install ``ohmlr`` on your computer using ``pip``, execute
.. code-block:: sh
pip install ohmlr
- Test out ``ohmlr`` in Python:
.. code-block:: python
import ohmlr
import numpy as np
# create model and generate data
n_features = 16
n_x_classes = np.random.randint(2, 10, size=n_features)
n_y_classes = 8
model = ohmlr.ohmlr().random(n_features, n_x_classes, n_y_classes)
x, y = model.generate_data(n_samples=1000)
# fit and score model
model.fit(x, y)
print(model.score(x, y))
Links
-----
Online documentation:
http://joepatmckenna.github.io/ohmlr
Source code repository:
https://github.com/joepatmckenna/ohmlr
Python package index:
https://pypi.python.org/pypi/ohmlr
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ohmlr-0.0.17.tar.gz
(4.7 kB
view details)
File details
Details for the file ohmlr-0.0.17.tar.gz
.
File metadata
- Download URL: ohmlr-0.0.17.tar.gz
- Upload date:
- Size: 4.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.19.8 CPython/2.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 359539ee850eb9d64e8a6806c48c8ed23b1629b9b30bb53cd8814156e3f7bd6e |
|
MD5 | 64be79ce3820fa85b05c32469c49252f |
|
BLAKE2b-256 | eb7529f764fd42aa29b22b0dc10287e4dec89f6f4e11c9d51d8db67dedbfb773 |