Skip to main content

One-hot multinomial logisitc regression

Project description

One-hot multinomial logistic regression
========================

Quick Start
-----------

Installation
~~~~~~~~~~~~

- To install ``ohmlr`` on your computer using ``pip``, execute

.. code-block:: sh

pip install ohmlr

- Test out ``ohmlr`` in Python:

.. code-block:: python

import ohmlr
import numpy as np

# create model and generate data
n_features = 16
n_x_classes = np.random.randint(2, 10, size=n_features)
n_y_classes = 8
model = ohmlr.ohmlr().random(n_features, n_x_classes, n_y_classes)
x, y = model.generate_data(n_samples=1000)

# fit and score model
model.fit(x, y)
print(model.score(x, y))


Links
-----

Online documentation:
http://joepatmckenna.github.io/ohmlr

Source code repository:
https://github.com/joepatmckenna/ohmlr

Python package index:
https://pypi.python.org/pypi/ohmlr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ohmlr-0.0.17.tar.gz (4.7 kB view details)

Uploaded Source

File details

Details for the file ohmlr-0.0.17.tar.gz.

File metadata

  • Download URL: ohmlr-0.0.17.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.19.8 CPython/2.7.10

File hashes

Hashes for ohmlr-0.0.17.tar.gz
Algorithm Hash digest
SHA256 359539ee850eb9d64e8a6806c48c8ed23b1629b9b30bb53cd8814156e3f7bd6e
MD5 64be79ce3820fa85b05c32469c49252f
BLAKE2b-256 eb7529f764fd42aa29b22b0dc10287e4dec89f6f4e11c9d51d8db67dedbfb773

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page