Skip to main content

One-hot multinomial logisitc regression

Project description

One-hot multinomial logistic regression
========================

Quick Start
-----------

Installation
~~~~~~~~~~~~

- To install ``ohmlr`` on your computer using ``pip``, execute

.. code-block:: sh

pip install ohmlr

- Test out ``ohmlr`` in Python:

.. code-block:: python

import ohmlr
import numpy as np

# create model and generate data
n_features = 16
n_x_classes = np.random.randint(2, 10, size=n_features)
n_y_classes = 8
model = ohmlr.ohmlr().random(n_features, n_x_classes, n_y_classes)
x, y = model.generate_data(n_samples=1000)

# fit and score model
model.fit(x, y)
print(model.score(x, y))


Links
-----

Online documentation:
http://joepatmckenna.github.io/ohmlr

Source code repository:
https://github.com/joepatmckenna/ohmlr

Python package index:
https://pypi.python.org/pypi/ohmlr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for ohmlr, version 0.0.17
Filename, size File type Python version Upload date Hashes
Filename, size ohmlr-0.0.17.tar.gz (4.7 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page