Skip to main content

A Python package to serve python functions, classes, or .py files on a local server or cloud-based environment.

Project description

About

Okik is a command-line interface (CLI) that allows users to run various inference services such as LLM, RAG(WIP), or anything in between using various frameworks on any *cloud. With Okik, you can easily run these services directly on any cloud without the hassle of managing your own infra.

Installation

To install Okik, follow these steps:

  1. Clone the repository: git clone https://github.com/okikorg/okik.git
  2. Navigate to the project directory: cd okik
  3. Install Okik using pip: pip install .

Quick Start

To run Okik, simply execute the following command in your terminal: okik

██████  ██   ██ ██ ██   ██
██    ██ ██  ██  ██ ██  ██
██    ██ █████   ██ █████
██    ██ ██  ██  ██ ██  ██
██████  ██   ██ ██ ██   ██



Simplify. Deploy. Scale.
Type 'okik --help' for more commands.

Initialise the project

okik init

Quick Example

Write this in your main.py file:

from okik.endpoints import service, endpoint, app
import asyncio
from typing import Any
from sentence_transformers import SentenceTransformer
import sentence_transformers
from torch.nn.functional import cosine_similarity as cosine
import torch
import random

# your service configuration
@service(
    replicas=1,
    resources={"accelerator": {"type": "A40", "device": "cuda", "count": 1, "memory": 4}},
    backend="okik" # <- provisioning backend is okik
)
class Embedder:
    def __init__(self):
        self.model = SentenceTransformer("paraphrase-MiniLM-L6-v2", cache_folder=".okik/cache")

    @endpoint()
    def embed(self, sentence: str):
        logits = self.model.encode(sentence)
        return logits

    @endpoint()
    def similarity(self, sentence1: str, sentence2: str):
        logits1 = self.model.encode(sentence1, convert_to_tensor=True)
        logits2 = self.model.encode(sentence2, convert_to_tensor=True)
        return cosine(logits1.unsqueeze(0), logits2.unsqueeze(0))

    @endpoint()
    def version(self):
        return sentence_transformers.__version__

    @endpoint(stream=True)
    async def stream_data(self) -> Any:
        async def data_generator():
            for i in range(10):
                yield f"data: {i}\n"
                await asyncio.sleep(1)
        return data_generator()

# Mock LLM Service Example
@service(replicas=1)
class MockLLM:
    def __init__(self):
        pass

    @endpoint(stream=True) # <- streaming response enabled for use cases like chatbot
    async def stream_random_words(self, prompt: str = "Hello"):
        async def word_generator():
            words = ["hello", "world", "fastapi", "stream", "test", "random", "words", "python", "async", "response"]
            for _ in range(10):
                word = random.choice(words)
                yield f"{word}\n"
                await asyncio.sleep(0.4)
        return word_generator()

Verify the routes

# run the okik routes to check all available routes
okik routes

Serving the app

# run the okik run to start the server in production mode
okik server
# or run in dev mode
okik server --dev --reload
#or
okik server -d -r

Test the app

curl -X POST http://0.0.0.0:3000/embedder/version
# or if you like to use httpie then
http POST 0.0.0.0:3000/embedder/version

# or test the stream endpoint
curl -X POST http://0.0.0.0:3000/mockllm/stream_random_words -d '{"prompt": "Hello"}'
# or if you like to use httpie then
http POST 0.0.0.0:3000/mockllm/stream_random_words prompt="hello" --stream

Build the app

okik build -a "your_awesome_app" -t latest

Status

Okik is currently in development so expect sharp edges and bugs. Feel free to contribute to the project by submitting a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

okik-0.0.3.tar.gz (19.4 kB view details)

Uploaded Source

Built Distribution

okik-0.0.3-py3-none-any.whl (16.7 kB view details)

Uploaded Python 3

File details

Details for the file okik-0.0.3.tar.gz.

File metadata

  • Download URL: okik-0.0.3.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.0.0

File hashes

Hashes for okik-0.0.3.tar.gz
Algorithm Hash digest
SHA256 e797edeffb3eed5a64a7360b5e8bbafc0b1590ab96f8a0103539ff747363ae9f
MD5 704e2bfa0a64823dbac797d22bc974e4
BLAKE2b-256 54ea056b96f1da0040528a3a216d08814cd18a14457544b3fbb96009a97efc42

See more details on using hashes here.

File details

Details for the file okik-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: okik-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 16.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.0.0

File hashes

Hashes for okik-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1f616522e450909369257dfd86d6258a64419e3bf6707da469d6149dc1c3630a
MD5 8068112f0a9204612e6c4618de4aa6aa
BLAKE2b-256 225109bdb96132090a1ab9f5a9372a5ba158917ebc21f4f74a7cc40604a6756b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page