Skip to main content

OKNLP

Project description

OKNLP

Test Linux Test Mac OS Test Windows PyPI Documentation Status codecov

安装方法

CPU only

$ pip install "oknlp[cpu]"

GPU

请参考 安装 - OKNLP文档

系统支持

Windows Linux Mac OS
Python3.6
Python3.7
Python3.8
Python3.9

快速入门

中文分词

import oknlp

if __name__ == "__main__":
    model = oknlp.cws.get_by_name("thulac")
    model([
        "我爱北京天安门"
    ])
    # [['我', '爱', '北京', '天安门']]

完整文档请参考 中文分词 - OKNLP文档

命名实体识别

import oknlp

if __name__ == "__main__":
    model = oknlp.ner.get_by_name("bert")
    model([
        "我爱北京天安门"
    ])
    # [[{'type': 'LOC', 'begin': 2, 'end': 4}, {'type': 'LOC', 'begin': 4, 'end': 7}]]

完整文档请参考 命名实体识别 - OKNLP文档

词性标注

import oknlp

if __name__ == "__main__":
    model = oknlp.postagging.get_by_name("bert")
    model([
        "我爱北京天安门"
    ])
    # [[('我', 'PN'), ('爱', 'VV'), ('北京', 'NR'), ('天安门', 'NR')]]

完整文档请参考 词性标注 - OKNLP文档

细粒度实体分类

import oknlp

if __name__ == "__main__":
    model = oknlp.typing.get_by_name("bert")
    model([
        ("我爱北京天安门", (2, 4))
    ])
    # [[('location', 0.7169095873832703), ('place', 0.8128180503845215), ('city', 0.6188656687736511), ('country', 0.12475886940956116)]]

完整文档请参考 细粒度实体分类 - OKNLP文档

贡献者

@a710128

@Yumiko-188

@HuShaoRu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

oknlp-0.0.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (750.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

oknlp-0.0.5-cp39-cp39-win_amd64.whl (83.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

oknlp-0.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (750.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

oknlp-0.0.5-cp39-cp39-macosx_10_14_x86_64.whl (99.1 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

oknlp-0.0.5-cp38-cp38-win_amd64.whl (83.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

oknlp-0.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (750.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

oknlp-0.0.5-cp38-cp38-macosx_10_14_x86_64.whl (99.1 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

oknlp-0.0.5-cp37-cp37m-win_amd64.whl (83.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

oknlp-0.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (751.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

oknlp-0.0.5-cp37-cp37m-macosx_10_14_x86_64.whl (99.1 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

oknlp-0.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (750.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

oknlp-0.0.5-cp36-cp36m-macosx_10_14_x86_64.whl (99.1 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file oknlp-0.0.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for oknlp-0.0.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3fe959a06dff0d36071ad854c3fa0fde4d208b8b4bc344b4fd164b6ef9e2c755
MD5 2bb2467597fbdc7a4b31b4690f61c105
BLAKE2b-256 de0ba274c4a31b9ff50a126af77c802d13de05caf39dffb69e45d0a9116fc75d

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: oknlp-0.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 83.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for oknlp-0.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 053488067b846f635b8044f76e1be810b0b8fb816b0e537da0a9476745820d1d
MD5 c1c82d7d5c3b75fc9953faaf7e55cbcc
BLAKE2b-256 bde118bfd8fe4fbdefdd983cd938e5c8e54c5494a4c93868e6c781fa21bcf37c

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for oknlp-0.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7da7a41ff963d5d8a753260e88fc793fbca41958eaea1fe862ff8a956f6fdde6
MD5 b1e8341ed57c626c89e7f659d31d1128
BLAKE2b-256 809bfe62344d3a7672fd7e60eb1653bd29b24e92c5eaed42f5524c81670210be

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: oknlp-0.0.5-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 99.1 kB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for oknlp-0.0.5-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f3f3c7d86fa5cbcb27868106a25a0555318388eece17dcba898e2cf052ff8758
MD5 6a4fdc6ad5a758b5510f799626010f8b
BLAKE2b-256 c168f52f9b51a1c1802b10955bf1df7aa001a26b5b62b75723209ba4bcc91a50

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: oknlp-0.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 83.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for oknlp-0.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b1904de6441ffeed29e6417323a03721fa34bb51c1fe4b9a1c3a8406973b79e7
MD5 f174b1a16cf6dbc8f4923c79fbf7b9bf
BLAKE2b-256 dbc63f4f132b629504badb99c1c870c749a179fef073893649e55d25544d85f2

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for oknlp-0.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 03e1162e064a9b1098411c6223654332597fccd788e9db5e73bd04c9be6e534d
MD5 21e0a839ae86aa62f64b21acb493d403
BLAKE2b-256 93d6da525ddbade217755f0031e171b6edd46675e4d502d0d84eaf99e232c4f6

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: oknlp-0.0.5-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 99.1 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for oknlp-0.0.5-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 abca5d72b659519d91ab5a5003d7d4e7bd1058197d1c4f83463cd3e71ebabfdd
MD5 6889fda1b98115d6199c6330249139ef
BLAKE2b-256 1b3fabf869ef993e6ea72e1896a81587ebf6dbd05c56bc92339f0a2a3a1e2eb2

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: oknlp-0.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 83.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for oknlp-0.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 746bcfab4e735e78b766db3b48601a0277a15ec0d742fd96f9a123d7cce816c8
MD5 8c111ccdbc3bb134ee2118840e8a3b7e
BLAKE2b-256 ab92514d5f68b2a9b5bad7be280cdacb0ae3acfeaecc821d2fadd6ddde94cd18

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for oknlp-0.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 125f8c5b50fe531e6651b33d853f8356afc03393870d4ca867cb46bcd3ff10fa
MD5 d734695d80e86c2aae5d80e047a1b049
BLAKE2b-256 fc17f8db3dea85b8cf3bb887ae0d59c3634e118091f6bef37e0a5ff80962f5f6

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: oknlp-0.0.5-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 99.1 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for oknlp-0.0.5-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f79dd652c0d4acbeb04b2da8f2fb2477f34bff9ccc8a422925afeb537d08aa60
MD5 fcb66e87df2977e1add7aaa5dfc28191
BLAKE2b-256 b9e6c5ede50874a6b7c0311d1403843b03c50396d9146e437548d0d2ffa5c3f9

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for oknlp-0.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5954e55e71cbccbe83d9f3bcbb1914093b744118cab968d0f2745a7ddcda8535
MD5 2878811f09835218440e439e0195c419
BLAKE2b-256 08aa87890169c191287f34cf2f8bb9066adac2da42b0a393637004bc8c111375

See more details on using hashes here.

File details

Details for the file oknlp-0.0.5-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: oknlp-0.0.5-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 99.1 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for oknlp-0.0.5-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9964b004c2bed77dc047b2f2fc4894cf79dc38e6f5683e8ac0afe667a1930cb9
MD5 f7ecf74f315efdd10f2a2be4c7bbab90
BLAKE2b-256 37661cc02fc877558c045fe1ee6e6cd1cefde5863b0c04c2f80d6829b138b3c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page