Skip to main content

Online binary classification algorithms library (wrapper for OLL C++ library)

Project description

oll-python

travis-ci.org coveralls.io latest version license

This is a Python binding of the OLL library for machine learning.

Currently, OLL 0.03 supports following binary classification algorithms:

  • Perceptron

  • Averaged Perceptron

  • Passive Agressive (PA, PA-I, PA-II)

  • ALMA (modified slightly from original)

  • Confidence Weighted Linear-Classification.

For details of oll, see: http://code.google.com/p/oll

Installation

$ pip install oll

OLL library is bundled, so you don’t need to install it separately.

Usage

import oll
# You can choose algorithms in
# "P" -> Perceptron,
# "AP" -> Averaged Perceptron,
# "PA" -> Passive Agressive,
# "PA1" -> Passive Agressive-I,
# "PA2" -> Passive Agressive-II,
# "PAK" -> Kernelized Passive Agressive,
# "CW" -> Confidence Weighted Linear-Classification,
# "AL" -> ALMA
o = oll.oll("CW", C=1.0, bias=0.0)
o.add({0: 1.0, 1: 2.0, 2: -1.0}, 1)  # train
o.classify({0:1.0, 1:1.0})  # predict
o.save('oll.model')
o.load('oll.model')

# scikit-learn like fit/predict interface
import numpy as np
array = np.array([[1, 2, -1], [0, 0, 1]])
o.fit(array, [1, -1])
o.predict(np.array([[1, 2, -1], [0, 0, 1]]))
# => [1, -1]
from scipy.sparse import csr_matrix
matrix = csr_matrix([[1, 2, -1], [0, 0, 1]])
o.fit(matrix, [1, -1])
o.predict(matrix)
# => [1, -1]

# Multi label classification
import time
import oll
from sklearn.multiclass import OutputCodeClassifier
from sklearn import datasets, cross_validation, metrics


dataset = datasets.load_digits()
ALGORITHMS = ("P", "AP", "PA", "PA1", "PA2", "PAK", "CW", "AL")
for algorithm in ALGORITHMS:
    print(algorithm)
    occ_predicts = []
    expected = []
    start = time.time()
    for (train_idx, test_idx) in cross_validation.StratifiedKFold(dataset.target,
                                                                  n_folds=10, shuffle=True):
        clf = OutputCodeClassifier(oll.oll(algorithm))
        clf.fit(dataset.data[train_idx], dataset.target[train_idx])
        occ_predicts += list(clf.predict(dataset.data[test_idx]))
        expected += list(dataset.target[test_idx])
    print('Elapsed time: %s' % (time.time() - start))
    print('Accuracy', metrics.accuracy_score(expected, occ_predicts))
# => P
# => Elapsed time: 109.82188701629639
# => Accuracy 0.770172509738
# => AP
# => Elapsed time: 111.42936396598816
# => Accuracy 0.760155815248
# => PA
# => Elapsed time: 110.95964503288269
# => Accuracy 0.74735670562
# => PA1
# => Elapsed time: 111.39844799041748
# => Accuracy 0.806343906511
# => PA2
# => Elapsed time: 115.12716913223267
# => Accuracy 0.766277128548
# => PAK
# => Elapsed time: 119.53838682174683
# => Accuracy 0.77796327212
# => CW
# => Elapsed time: 121.20785689353943
# => Accuracy 0.771285475793
# => AL
# => Elapsed time: 116.52497220039368
# => Accuracy 0.785754034502

Note

  • This module requires C++ compiler to build.

  • oll.cpp & oll.hpp : Copyright (c) 2011, Daisuke Okanohara

  • oll_swig_wrap.cxx is generated based on ‘oll_swig.i’ in oll-ruby (https://github.com/syou6162/oll-ruby)

License

New BSD License.

CHANGES

0.2.1 (2017-6-30)

  • Multi label clasification (using scikit-learn)

  • Support Python 3.6

0.2 (2016-11-26)

  • scikit-learn like fit/predict interfaces are available

  • Setting C and bias parameters is available in initialization

  • Support Python 3.5

  • Unsupport Python 2.6 and 3.3

0.1.2 (2015-01-11)

  • Support testFile method

  • docstrings are available

0.1.1 (2014-03-29)

  • Compatibility some compilers

0.1 (2013-10-11)

  • Initial release.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oll-0.2.1.tar.gz (70.1 kB view details)

Uploaded Source

File details

Details for the file oll-0.2.1.tar.gz.

File metadata

  • Download URL: oll-0.2.1.tar.gz
  • Upload date:
  • Size: 70.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for oll-0.2.1.tar.gz
Algorithm Hash digest
SHA256 de9a4a45a5da1cc55882289e85f186f582c024f82724053b813b0bd54c899d23
MD5 777f0613853a4c75791cb887c2e24b82
BLAKE2b-256 acc891ed18f42663960273ed4480e6b8cc51f234169a6a08ee3abb1fbb716759

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page