This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Online binary classification algorithms library (wrapper for OLL C++ library)

Project Description

oll-python

This is a Python binding of the OLL library for machine learning.

Currently, OLL 0.03 supports following binary classification algorithms:

  • Perceptron
  • Averaged Perceptron
  • Passive Agressive (PA, PA-I, PA-II)
  • ALMA (modified slightly from original)
  • Confidence Weighted Linear-Classification.

For details of oll, see: http://code.google.com/p/oll

Installation

$ pip install oll

OLL library is bundled, so you don’t need to install it separately.

Usage

import oll
# You can choose algorithms in
# "P" -> Perceptron,
# "AP" -> Averaged Perceptron,
# "PA" -> Passive Agressive,
# "PA1" -> Passive Agressive-I,
# "PA2" -> Passive Agressive-II,
# "PAK" -> Kernelized Passive Agressive,
# "CW" -> Confidence Weighted Linear-Classification,
# "AL" -> ALMA
o = oll.oll("CW", C=1.0, bias=0.0)
o.add({0: 1.0, 1: 2.0, 2: -1.0}, 1)  # train
o.classify({0:1.0, 1:1.0})  # predict
o.save('oll.model')
o.load('oll.model')

# scikit-learn like fit/predict interface
import numpy as np
array = np.array([[1, 2, -1], [0, 0, 1]])
o.fit(array, [1, -1])
o.predict(np.array([[1, 2, -1], [0, 0, 1]]))
# => [1, -1]
from scipy.sparse import csr_matrix
matrix = csr_matrix([[1, 2, -1], [0, 0, 1]])
o.fit(matrix, [1, -1])
o.predict(matrix)
# => [1, -1]

# Multi label classification
import time
import oll
from sklearn.multiclass import OutputCodeClassifier
from sklearn import datasets, cross_validation, metrics


dataset = datasets.load_digits()
ALGORITHMS = ("P", "AP", "PA", "PA1", "PA2", "PAK", "CW", "AL")
for algorithm in ALGORITHMS:
    print(algorithm)
    occ_predicts = []
    expected = []
    start = time.time()
    for (train_idx, test_idx) in cross_validation.StratifiedKFold(dataset.target,
                                                                  n_folds=10, shuffle=True):
        clf = OutputCodeClassifier(oll.oll(algorithm))
        clf.fit(dataset.data[train_idx], dataset.target[train_idx])
        occ_predicts += list(clf.predict(dataset.data[test_idx]))
        expected += list(dataset.target[test_idx])
    print('Elapsed time: %s' % (time.time() - start))
    print('Accuracy', metrics.accuracy_score(expected, occ_predicts))
# => P
# => Elapsed time: 109.82188701629639
# => Accuracy 0.770172509738
# => AP
# => Elapsed time: 111.42936396598816
# => Accuracy 0.760155815248
# => PA
# => Elapsed time: 110.95964503288269
# => Accuracy 0.74735670562
# => PA1
# => Elapsed time: 111.39844799041748
# => Accuracy 0.806343906511
# => PA2
# => Elapsed time: 115.12716913223267
# => Accuracy 0.766277128548
# => PAK
# => Elapsed time: 119.53838682174683
# => Accuracy 0.77796327212
# => CW
# => Elapsed time: 121.20785689353943
# => Accuracy 0.771285475793
# => AL
# => Elapsed time: 116.52497220039368
# => Accuracy 0.785754034502

Note

  • This module requires C++ compiler to build.
  • oll.cpp & oll.hpp : Copyright (c) 2011, Daisuke Okanohara
  • oll_swig_wrap.cxx is generated based on ‘oll_swig.i’ in oll-ruby (https://github.com/syou6162/oll-ruby)

License

New BSD License.

CHANGES

0.2.1 (2017-6-30)

  • Multi label clasification (using scikit-learn)
  • Support Python 3.6

0.2 (2016-11-26)

  • scikit-learn like fit/predict interfaces are available
  • Setting C and bias parameters is available in initialization
  • Support Python 3.5
  • Unsupport Python 2.6 and 3.3

0.1.2 (2015-01-11)

  • Support testFile method
  • docstrings are available

0.1.1 (2014-03-29)

  • Compatibility some compilers

0.1 (2013-10-11)

  • Initial release.
Release History

Release History

This version
History Node

0.2.1

History Node

0.1.2

History Node

0.1.1

History Node

0.1

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
oll-0.2.1.tar.gz (70.1 kB) Copy SHA256 Checksum SHA256 Source Jun 29, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting