Tools for working with Ollama model data
Project description
Ollama Data Tools
Requirements
- Python 3.x
Installation
Clone the repository and install the necessary dependencies:
git clone https://github.com/queelius/ollama_data_tools.git
cd ollama_data_tools
pip install -r requirements.txt
pip install -e .
Ollama Data Toolkit
The OllamaData
class is the core module of the Ollama Data Toolkit, allowing users to work programmatically with Ollama model data. This class provides methods to access, search, and filter model information.
Features
- Retrieve the schema of the OllamaData object.
- Access models by name or index.
- List all available models.
- Perform JMESPath queries and apply regex filters on the model data.
- Cache model data for efficient repeated access.
Class Methods
OllamaData.get_schema() -> Dict[str, Any]
Returns the schema of the OllamaData
object.
OllamaData.__init__(cache_path: str = '~/.ollama_data/cache', cache_time: str = '1 day')
Initializes the OllamaData
object.
cache_path
: The path to the cache file.cache_time
: The duration the cache is valid.
OllamaData.__len__() -> int
Returns the number of models.
OllamaData.__getitem__(index: int) -> Dict[str, Any]
Gets a model by index.
index
: The index of the model.
OllamaData.get_model(name: str) -> Dict[str, Any]
Gets the model by name. Returns the most specific model that starts with the given name.
name
: The name of the model.
OllamaData.get_models() -> Dict[str, Any]
Gets the models. Caches the model data to avoid repeated regeneration.
OllamaData.search(query: str = '[*]', regex: Optional[str] = None, regex_path: str = '@') -> Dict[str, Any]
Queries, searches, and views the models using a JMESPath query, regex filter, and exclude keys.
query
: The JMESPath query to filter and provide a view of the models.regex
: The regex pattern to match against the output.regex_path
: The JMESPath query for the regex pattern.
Usage Example
Here is an example of how to use the OllamaData
class programmatically:
import ollama_data as od
# Initialize the OllamaData object
models = od.OllamaData(cache_path='~/.ollama_data/cache', cache_time='1 day')
# Get the schema of the OllamaData object
print("Schema:", models.get_schema())
# List all models
print("Models:", ollama_data.get_models())
# Get a specific model by name
model = models.get_model('mistral')
print("Specific Model:", model['name'])
# Search models using a JMESPath query
query_result = models.search(query="[*].{name: name, size: total_weights_size}")
print("Query Result:", query_result)
# Search models using a JMESPath query and regex filter
query_regex_result = models.search(
query="[*].{name: name, size: total_weights_size}",
regex="mistral", regex_path="name")
print("Query Regex Result:", query_regex_result)
Ollama Data Query
The ollama_data_query.py
script allows users to search and filter Ollama models using JMESPath queries and regular expressions. This tool is designed to help users explore and retrieve specific information about the models in their Ollama registry.
Features
- Perform JMESPath queries to filter model data.
- Use regular expressions to match specific patterns within the model data.
- Print the JSON schema of the models.
- Support for piped input queries.
Arguments
query
: The JMESPath query to filter results.--regex
: Regular expression to match.--regex-path
: The JMESPath query for the regex pattern to apply against (default:@
).--schema
: Print the JSON schema.--debug
: Set logging level to DEBUG.--cache-time
: Time to keep the cache file (default:1 hour
).--cache-path
: The path to the cache file (default:~/.ollama_data/cache
).
Usage
To perform a JMESPath query:
ollama_data_query "max_by(@, &total_weights_size).{name: name, size: total_weights_size}"
To use a regular expression to filter results:
ollama_data_query --regex "mistral:latest" --regex-path name "[*].{name: name, size: total_weights_size}"
To pipe a query from a file or another command:
cat query.txt | ollama_data_query
Using regex and regex-path with a piped query:
echo "[*].{info: { name: name, other: weights}}" | ollama_data_query --regex 14f2 --regex-path "info.other[*].file_name"
Examples
Query for the Largest Model
ollama_data_query "max_by(@, &total_weights_size).{name: name, sz: total_weights_size}"
Filter Models Using Regex
ollama_data_query --regex "mistral|llama3" --regex-path name "[*].{name: name, size: total_weights_size}"
Pipe a Query from a File
cat query.txt | ollama_data_query
Use Regex with a Piped Query
echo "[*].{info: { name: name, other: weights}}" | ollama_data_query --regex 14f2 --regex-path "info.other[*].file_name"
Ollama Data Export
The ollama_data_export
script allows users to export Ollama models to a specified directory. This tool creates soft links for the model weights and saves the model metadata in the output directory.
Features
- Export specified models to a self-contained directory.
- Create soft links for model weights.
- Save model metadata in JSON format.
- Enable debug logging for detailed output.
Arguments
outdir
: The output directory where the models will be exported.--models
: Comma-separated list of models to export. If not specified, all models will be exported.--cache-path
: The path to the cache file (default:~/.ollama_data/cache
).--cache-time
: The time to keep the cache file (default:1 day
).--debug
: Enable debug logging.--hash-length
: The length of the hash to use for the weight soft-links (default:8
).
Usage
To export specified models to a directory:
ollama_data_export --models model1,model2 --outdir /path/to/export
To export all models to a directory:
ollama_data_export /path/to/export
Examples
Export Specified Models
ollama_data_export --models mistral,llama3 --outdir /path/to/export
Export All Models
ollama_data_export --ourdir /path/to/export
Enable Debug Logging
ollama_data_export --models mistral --outdir /path/to/export --debug
Specify Hash Length for Soft Links
ollama_data_export --models mistral --outdir /path/to/export --hash-length 2
Ollama Data Adapter
The ollama_data_adapter
script adapts Ollama models for use with other inference engines, such as llamacpp
. This tool is designed to reduce friction when experimenting with local LLM models and integrates with other tools for viewing, searching, and exporting Ollama models.
Features
- List available engines and models.
- Run models with specified engines.
- Show the template for a given model.
- Pass additional arguments to the inference engine.
- Debugging information for advanced users.
Arguments
model
: The model to run.engine
: The engine to use.--engine-path
: The path to the engine (required).--list-engines
: List available engines.--list-models
: List available models.--cache-path
: The path to the cache file (default:~/.ollama_data/cache
).--cache-time
: The time to keep the cache file (default:1 day
).--engine-args
: Arguments to pass through to the engine.--debug
: Print debug information.--show-template
: Show the template for the model.
Usage
To list all available engines:
ollama_data_adapter --list-engines
To list all available models:
ollama_data_adapter --list-models
To show the template for a specific model:
ollama_data_adapter mistral --show-template
## The template for the model has the following forms:
## - [INST] {{ .System }} {{ .Prompt }} [/INST]
To run a specific model with an engine:
ollama_data_adapter model engine --engine-path /path/to/engine --engine-args 'arg1' ... 'argn'
Example
To use the llamacpp
inference engine with the mistral
model (assuming
it is available in your Ollama
registry), you might use the following
arguments:
ollama_data_adapter
mistral # Also matches `mistral:latest`
llamacpp # Use the llamacpp engine
--engine-path /path/to/llamacpp # Path to engine, e.g. ~/llamacpp/main
--engine-args # Pass these arguments into the engine
'--n-gpu-layers 40'
'--prompt "[INST] You are a helpful AI assistant. [/INST]"'
The --prompt
engine pass-through argument follows the template shown by
the ollama_data_adapter mistral --show-template
.
We place a lot of burden on the end-user to get the formatting right. These models are very sensitive to how you prompt them, so some experimentation may be necessary.
You may also want to use ollama_data_query
to show the system message
or other properties of a model, so that you can further customize the
pass-through arguments to better fit its training data.
Contributing
Contributions are welcome! Please submit a pull request or open an issue to discuss changes.
License
This project is licensed under the MIT License. See the LICENSE file for details.
Author
Alex Towell
- Email: lex@metafunctor.com
- Twitter: @queelius
- Website: metafunctor
- GitHub: @queelius
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ollama_data_tools-0.1.1.tar.gz
.
File metadata
- Download URL: ollama_data_tools-0.1.1.tar.gz
- Upload date:
- Size: 16.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a76a80445cdf86cabf97adf4c04ce516610411dd8cf4e115a9f5f23d4f8da108 |
|
MD5 | 610683a5af251c6444c96a311f77dfee |
|
BLAKE2b-256 | 85c0c6303ed047bdc930c7bc46907b444ae65838411ba5a759cd5f1c18f2e88c |
File details
Details for the file ollama_data_tools-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: ollama_data_tools-0.1.1-py3-none-any.whl
- Upload date:
- Size: 17.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b6d89dd070a93ea80d4a4b993bd11b0881e09d32c7fc9f5b320f67628636606 |
|
MD5 | 3d285db762dc501e9a4cddf66cff059d |
|
BLAKE2b-256 | 320db791547ac057d1dbc78de42e4f602351eefa0df7a9e0b725927375e66397 |