A tool to digest PDF files for Large Language Models and serving them via a REST API, including their source references.
Project description
Ollama RAG Generator (German edition)
A tool to digest PDF files for Large Language Models and serving them via a REST API, including their source references.
The command line toolkit that provides methods:
ppf
: to preprocess PDF files and create context augmented chunks that are stored into a Qdrant vector database collection.ask
: to send a query to the LLM enginechat_server
: to start a FastAPI chat server interface that uses the LLM engine to answer questions
Prerequisites
- Get your https://github.com/nlmatics/nlm-ingestor up and running:
docker run --rm -p 5010:5001 ghcr.io/nlmatics/nlm-ingestor:latest
- You need to have a running instance of Qdrant. You can use the following command to start a Qdrant instance:
docker run --rm -p 6333:6333 -p 6334:6334 -v /tmp/qdrant:/data qdrant/qdrant:latest
- You need to have a running instance of Ollama. You can use the following command to start a Ollama instance:
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
See more at documentation at Docker Hub
Run the preprocessor
Clone the repository and install the dependencies:
poetry install
and then run the preprocessor:
ppf --help
Output:
Usage: ppf [OPTIONS] FOLDER_PATH
Process a folder of OLLAMA pdf input data.
Options:
-llm, --llmsherpa_api_url TEXT URL of the LLMSherpa API to use for
processing the PDFs. Default is "http://loca
lhost:5010/api/parseDocument?renderFormat=al
l"
-o, --output PATH Output folder for the processed data.
Default is "output".
-f, --format [txt|raw|sections|chunks]
Output format for the processed data.
Default is "chunks"
-r, --recursive Process the folder recursively, otherwise
only the top level is processed.
-db, --database TEXT Store the processed data to "qdrant".
Default collection is "rag"
-si, --include_section_info Include section information in the output.
--help Show this message and exit.
In order to preprocess a folder of PDF input data, run the following command:
ppf '/mnt/OneDrive/Shared Files' -db rag -o '/tmp' -r
This reads the PDF files located in specified folder recursively and stores the processed data in the /tmp
folder. Also, the processed data is stored in the rag
collection in the qdrant
database.
Ask questions
Run the chat server
To start the chat server, run the following command:
chat_server --help
Usage: chat_server [OPTIONS]
Start the chat server with uvicorn.
Options:
-h, --host TEXT Host the server runs on. Default is `localhost`
-c, --collection TEXT Index collection name to use for the query.
Default is "rag".
-p, --port INTEGER Port to run the server on. (8000)
-d, --debug Run the server in debug mode.
--help Show this message and exit.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ollama_rag_de-0.1.0.tar.gz
.
File metadata
- Download URL: ollama_rag_de-0.1.0.tar.gz
- Upload date:
- Size: 10.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.11.9 Linux/6.5.0-1017-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8302d9c96b389d6a720812e08d984540b9fb8ad241aa251cc324c1590a51e365 |
|
MD5 | 410bb6a8db7ada4b6a2eda59768e214d |
|
BLAKE2b-256 | 4c63fab6ac5b1b66da317093559af2b873895b926408b526404e537d635ad6b3 |
File details
Details for the file ollama_rag_de-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: ollama_rag_de-0.1.0-py3-none-any.whl
- Upload date:
- Size: 12.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.11.9 Linux/6.5.0-1017-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | db01b484e90daf69aa460d8fc6d407126e0822374c4109cd56dc65cb20b188b2 |
|
MD5 | 90c3a78b19b5d72f4d42d4f3aff789f8 |
|
BLAKE2b-256 | 5dcd4b6fe353a28b2e43ccbbe2ff7528243aa9a9dbf4d0414f21af4cbf683264 |