OM Simple
Project description
Image Classification
pip install om-simple
Data Preparation
{dataset name}/
├── train/
│ ├── {class1}/
│ ├── {class2}/
│ ├── ...
└── val/
├── {class1}/
├── {class2}/
├── ...
Example Code
from om_simple.img_class_head import ImageClassification
from om_simple.img_class_model import run_train
from om_simple.tools.utils import is_blur
# Train
run_train("{dataset name}",
model_name="{model_name}", # e.g., resnet18, resnet50, vit_base_patch16_224, etc....
outdir="{output_dir}")
# Simple Classification
X = ImageClassification("epoch099.ckpt")
z = X.predict(images=["sample.jpg"])
# Blur detection
print (is_blur("sample.jpg"))
# Multi label classification
from om_simple.multi_class_model import MultiClass
X = MultiClass("model.ckpt","label.json")
z = X.predict(images=["sample.jpg"])
How to get available model_name
import timm
avail_pretrained_models = timm.list_models(pretrained=True)
print (avail_pretrained_models)
all_vit_models = timm.list_models('vit*')
print (all_vit_models)
Tensorboard
tensorboard --logdir {output_dir} --bind_all
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
om_simple-0.1.6.tar.gz
(1.4 MB
view details)
File details
Details for the file om_simple-0.1.6.tar.gz
.
File metadata
- Download URL: om_simple-0.1.6.tar.gz
- Upload date:
- Size: 1.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.26.0 setuptools/58.2.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 89e1513a471c1879e20a1c8128645bd8d8510b9cde6eef82d4eec87d4664e170 |
|
MD5 | 28829d855467595aee18e791e09ee249 |
|
BLAKE2b-256 | d794065fb7be29b208b55435ee94a7cf6468277c730549a7882aede4bf74dc9c |