Skip to main content

Python library for cloud and cloud shadow segmentation in high to moderate resolution satellite imagery

Project description

OmniCloudMask

OmniCloudMask is a Python library for state-of-the-art cloud and cloud shadow segmentation in high to moderate resolution satellite imagery.

As a successor to the CloudS2Mask library, OmniCloudMask offers higher accuracy while supporting a wide range of resolutions, sensors, and processing levels.

Features

  • Process imagery resolutions from 10 m to 50 m, (higher resolutions can be down sampled to 10 m).
  • Any imagery processing level
  • Patch-based processing of large satellite images
  • Multi-threaded patch compilation and model inference
  • Option to export confidence maps
  • Only requires Red, Green and NIR bands
  • Known to work well with Sentinel-2, Landsat 8, PlanetScope and Maxar
  • Supports inference on cuda, mps and cpu

Try in Colab

Colab_Button

Installation

To install the package, use one of the following command:

pip install omnicloudmask
pip install git+https://github.com/DPIRD-DMA/OmniCloudMask.git

Usage

Predict from Array

To predict cloud and cloud shadow masks from a numpy array representing the Red, Green, and NIR bands:

import numpy as np
from omnicloudmask import predict_from_array

# Example input array, in practice this should be Red, Green and NIR bands
input_array = np.random.rand(3, 1024, 1024)

# Predict cloud and cloud shadow masks
pred_mask = predict_from_array(input_array)

Predict from Load Function

To predict cloud and cloud shadow masks for a list of Sentinel-2 scenes:

from pathlib import Path
from omnicloudmask import predict_from_load_func, load_s2,

# Paths to scenes (L1C and or L2A)
scene_paths = [Path("path/to/scene1.SAFE"), Path("path/to/scene2.SAFE")]

# Predict masks for scenes
pred_paths = predict_from_load_func(scene_paths, load_s2)

Usage tips

  • If using an NVIDIA GPU make sure to increase the default 'batch_size'.
  • In most cases setting 'inference_dtype' to "bf16" should improve processing speed, if your hardware supports it.
  • If you are running out of VRAM even with a batch_size of 1 try setting the 'mosaic_device' device to 'cpu'.
  • Make sure if you are using imagery above 10 m res to downsample it before passing it to OmniCloudMask.
  • If you are processing many files try to use the 'predict_from_load_func' as it preloads data during inference, resulting in faster processing.
  • In some rare cases OmniCloudMask may fail to detect cloud if the raster data is clipped by sensor saturation or preprocessing, this results in image regions with no remaining texture to enable detection. To resolve this simply preprocess these regions and set the areas to 0, the no data value.
  • OmniCloudMask expects Red, Green and NIR bands, however if you don't have a NIR band then we have seen reasonable results passing Red Green BLUE bands into the model instead.

Parameters

predict_from_load_func

  • scene_paths (Union[list[Path], list[str]]): A list of paths to the scene files to be processed.
  • load_func (Callable): A function to load the scene data.
  • patch_size (int): Size of the patches for inference. Defaults to 1000.
  • patch_overlap (int): Overlap between patches for inference. Defaults to 300.
  • batch_size (int): Number of patches to process in a batch. Defaults to 1.
  • inference_device (Union[str, torch.device]): Device to use for inference (e.g., 'cpu', 'cuda'). Defaults to the device returned by default_device().
  • mosaic_device (Union[str, torch.device]): Device to use for mosaicking patches. Defaults to the device returned by default_device().
  • inference_dtype (Union[torch.dtype, str]): Data type for inference. Defaults to torch.float32.
  • export_confidence (bool): If True, exports confidence maps instead of predicted classes. Defaults to False.
  • no_data_value (int): Value within input scenes that specifies no data region. Defaults to 0.
  • overwrite (bool): If False, skips scenes that already have a prediction file. Defaults to True.
  • apply_no_data_mask (bool): If True, applies a no-data mask to the predictions. Defaults to True.

predict_from_array

  • input_array (np.ndarray): A numpy array with shape (3, height, width) representing the Red, Green, and NIR bands.
  • patch_size (int): Size of the patches for inference. Defaults to 1000.
  • patch_overlap (int): Overlap between patches for inference. Defaults to 300.
  • batch_size (int): Number of patches to process in a batch. Defaults to 1.
  • inference_device (Union[str, torch.device]): Device to use for inference (e.g., 'cpu', 'cuda'). Defaults to the device returned by default_device().
  • mosaic_device (Union[str, torch.device]): Device to use for mosaicking patches. Defaults to the device returned by default_device().
  • inference_dtype (Union[torch.dtype, str]): Data type for inference. Defaults to torch.float32.
  • export_confidence (bool): If True, exports confidence maps instead of predicted classes. Defaults to False.
  • no_data_value (int): Value within input scenes that specifies no data region. Defaults to 0.
  • apply_no_data_mask (bool): If True, applies a no-data mask to the predictions. Defaults to True.
  • custom_model_paths (Union[list[Union[str, Path]], Union[str, Path]]): If set these models will be used for inference.

Contributing

Contributions are welcome! Please submit a pull request or open an issue to discuss any changes.

License

This project is licensed under the MIT License

Acknowledgements

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

omnicloudmask-1.0.3.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

omnicloudmask-1.0.3-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file omnicloudmask-1.0.3.tar.gz.

File metadata

  • Download URL: omnicloudmask-1.0.3.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for omnicloudmask-1.0.3.tar.gz
Algorithm Hash digest
SHA256 61c0459d3d7febdbc29876b3cff5eabec0ad4808a0ec86f45fed25b0a7371022
MD5 8964aa5a879e127270765a00563a9c0e
BLAKE2b-256 5479ddd2fe495047d76c1dd8eb001160747309a6304e5157a357eb634cb64f15

See more details on using hashes here.

File details

Details for the file omnicloudmask-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for omnicloudmask-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 8eeafaf17ab5fe272deb64d1c7b4371837f9e4c0ec87ed274e8f2412d17beca7
MD5 0730fd0bebdc8dd084be485789bc18e7
BLAKE2b-256 85458012ce97afc69aa20ec42269f478739c8305f8fbae67885ed1b65f27ce7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page