Automatic hyperparameter optimizer based on Ax/Botorch
Project description
OmniOpt2
Basically the same as OmniOpt, but based on ax/botorch instead of hyperopt
Main program
./omniopt --partition=alpha --experiment_name=example --mem_gb=1 --time=60 \
--worker_timeout=60 --max_eval=500 --num_parallel_jobs=500 --gpus=1 \
--follow --run_program=ZWNobyAiUkVTVUxUOiAlKHBhcmFtKSI= \
--parameter param range 0 1000 float
This will automatically install all dependencies. Internally, it calls a python-script.
Show results
./omniopt_evaluate
Plot results
./plot --run_dir runs/example/0
Or, with --min and --max:
./plot --run_dir runs/example/0 --min 0 --max 100
Run tests
Runs the main test suite. Runs an optimization, continues it, tries to continue one that doesn't exit, and runs a job with many different faulty jobs that fail in all sorts of ways (to test how OmniOpt2 reacts to it).
./tests/main_tests
Install from repo
`pip3 install -e git+https://github.com/NormanTUD/OmniOpt2.git#egg=OmniOpt2`
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
omniopt2-2024.10.27.post1.tar.gz
(110.9 kB
view details)
Built Distribution
File details
Details for the file omniopt2-2024.10.27.post1.tar.gz
.
File metadata
- Download URL: omniopt2-2024.10.27.post1.tar.gz
- Upload date:
- Size: 110.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec20b7e9d72de9d087bffcad1b38b59b450e8ecd5689300a017b11ca0753d455 |
|
MD5 | 49ba437c052c2caf17b3ae8244ab6f63 |
|
BLAKE2b-256 | 2a8ce5f245c4298bc68723d6fdf67ea075e377b595e4c99b732206b0c4226d3f |
File details
Details for the file omniopt2-2024.10.27.post1-py3-none-any.whl
.
File metadata
- Download URL: omniopt2-2024.10.27.post1-py3-none-any.whl
- Upload date:
- Size: 250.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 566713e1d3d2cc279c0cd399f728bad4a5b7f97fccd023fc92a5fa09d76835d0 |
|
MD5 | 4129f5132283763181aa0c9438585430 |
|
BLAKE2b-256 | 1619801a8b3747541abe75b239439a0b5a13589185961ba04f9c3560bcc1200a |