Skip to main content

O! My Models (omymodels) is a library to generate Python Models for SQLAlchemy, GinoORM, Pydantic & Python Dataclasses from SQL DDL .

Project description

O! My Models

badge1 badge2 badge3

Big example you can find in example/ folder on the github: https://github.com/xnuinside/omymodels/tree/main/example

O! My Models (omymodels) is a library to generate from SQL DDL Python Models for SQLAlchemy (models), SQLAlchemy Core (tables), GinoORM (I hope to add several more ORMs in future), Pydantic classes and Python Dataclasses (dataclasses module).

By default method create_models generate GinoORM models, to get Pydantic models output use the argument models_type='pydantic' (‘sqlalchemy’ for SQLAlchemy models; ‘dataclass’ for Dataclasses; ‘sqlalchemy_core’ for Sqlalchemy Core Tables).

A lot of examples in tests/ - https://github.com/xnuinside/omymodels/tree/main/tests.

For example,

from omymodels import create_models


ddl = """
CREATE table user_history (
     runid                 decimal(21) null
    ,job_id                decimal(21)  null
    ,id                    varchar(100) not null
    ,user              varchar(100) not null
    ,status                varchar(10) not null
    ,event_time            timestamp not null default now()
    ,comment           varchar(1000) not null default 'none'
    ) ;


"""
result = create_models(ddl, models_type='pydantic')['code']

 # and output will be:
import datetime
from typing import Optional
from pydantic import BaseModel


class UserHistory(BaseModel):

    runid: Optional[int]
    job_id: Optional[int]
    id: str
    user: str
    status: str
    event_time: datetime.datetime
    comment: str

To generate Dataclasses from DDL use argument models_type='dataclass'

for example:

#  (same DDL as in Pydantic sample)
result = create_models(ddl, schema_global=False, models_type='dataclass')['code']

# and result will be:
import datetime
from dataclasses import dataclass


@dataclass
class UserHistory:

    id: str
    user: str
    status: str
    runid: int = None
    job_id: int = None
    event_time: datetime.datetime = datetime.datetime.now()
    comment: str = 'none'

GinoORM example. If you provide an input like:

CREATE TABLE "users" (
  "id" SERIAL PRIMARY KEY,
  "name" varchar,
  "created_at" timestamp,
  "updated_at" timestamp,
  "country_code" int,
  "default_language" int
);

CREATE TABLE "languages" (
  "id" int PRIMARY KEY,
  "code" varchar(2) NOT NULL,
  "name" varchar NOT NULL
);

and you will get output:

from gino import Gino


db = Gino()


class Users(db.Model):

    __tablename__ = 'users'

    id = db.Column(db.Integer(), autoincrement=True, primary_key=True)
    name = db.Column(db.String())
    created_at = db.Column(db.TIMESTAMP())
    updated_at = db.Column(db.TIMESTAMP())
    country_code = db.Column(db.Integer())
    default_language = db.Column(db.Integer())


class Languages(db.Model):

    __tablename__ = 'languages'

    id = db.Column(db.Integer(), primary_key=True)
    code = db.Column(db.String(2))
    name = db.Column(db.String())

How to install

pip install omymodels

How to use

From cli

omm path/to/your.ddl

# for example
omm tests/test_two_tables.sql

You can define target path where to save models with -t, –target flag:

# for example
omm tests/test_two_tables.sql -t test_path/test_models.py

If you want generate the Pydantic or Dataclasses models - just use flag -m or –models_type=’pydantic’ / –models_type=’dataclass’

omm /path/to/your.ddl -m dataclass

# or
omm /path/to/your.ddl --models_type pydantic

Small library is used for parse DDL- https://github.com/xnuinside/simple-ddl-parser.

What to do if types not supported in O! My Models and you cannot wait until PR will be approved

First of all, to parse types correct from DDL to models - they must be in types mypping, for Gino it exitst in this file:

omymodels/gino/types.py types_mapping

If you need to use fast type that not exist in mapping - just do a path before call code with types_mapping.update()

for example:

from omymodels.gino import types
from omymodels import create_models

types.types_mapping.update({'your_type_from_ddl': 'db.TypeInGino'})

ddl = "YOUR DDL with your custom your_type_from_ddl"

models = create_models(ddl)

#### And similar for Pydantic types

from omymodels.pydantic import types  types_mapping
from omymodels import create_models

types.types_mapping.update({'your_type_from_ddl': 'db.TypeInGino'})

ddl = "YOUR DDL with your custom your_type_from_ddl"

models = create_models(ddl, models_type='pydantic')

Schema defenition

There is 2 ways how to define schema in Models:

  1. Globally in Gino() class and it will be like this:

from gino import Gino
db = Gino(schema="schema_name")

And this is a default way for put schema during generation - it takes first schema in tables and use it.

  1. But if you work with tables in different schemas, you need to define schema in each model in table_args. O!MyModels can do this also. Just use flag --no-global-schema if you use cli or put argument ‘schema_global=False’ to create_models() function if you use library from code. Like this:

ddl = """
CREATE TABLE "prefix--schema-name"."table" (
_id uuid PRIMARY KEY,
one_more_id int
);
    create unique index table_pk on "prefix--schema-name"."table" (one_more_id) ;
    create index table_ix2 on "prefix--schema-name"."table" (_id) ;
"""
result = create_models(ddl, schema_global=False)

And result will be this:

from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.schema import UniqueConstraint
from sqlalchemy import Index
from gino import Gino

db = Gino()


class Table(db.Model):

    __tablename__ = 'table'

    _id = db.Column(UUID, primary_key=True)
    one_more_id = db.Column(db.Integer())

    __table_args__ = (

    UniqueConstraint(one_more_id, name='table_pk'),
    Index('table_ix2', _id),
    dict(schema="prefix--schema-name")
            )

TODO in next releases

  1. Add Sequence generation in Models (Gino, SQLAlchemy)

  2. Generate Tortoise ORM models (https://tortoise-orm.readthedocs.io/en/latest/)

How to contribute

Please describe issue that you want to solve and open the PR, I will review it as soon as possible.

Any questions? Ping me in Telegram: https://t.me/xnuinside

Changelog

v0.8.0

  1. Fix –defaults-off flag in cli

  2. Added support for SQLAlchemy Core Tables generation

  3. Added examples folder in github omymodels/example

  4. Fix issue with ForeignKey in SQLAlchemy

v0.7.0

  1. Added generation for SQLAlchemy models (defaults from DDLs are setting up as ‘server_default’)

  2. Added defaults for Pydantic models

  3. Added flag to generate Pydantic & Dataclass models WITHOUT defaults defaults_off=True (by default it is False). And cli flag –defaults-off

  4. Fixed issue with Enum types with lower case names in DDLs

  5. Fixed several issues with Dataclass generation (default with datetime & Enums)

  6. ‘”’ do not remove from defaults now

v0.6.0

  1. O!MyModels now also can generate python Dataclass from DDL. Use argument models_type=’dataclass’ or if you use the cli flag –models_type dataclass or -m dataclass

  2. Added ForeignKey generation to GinoORM Models, added support for ondelete and onupdate

v0.5.0

  1. Added Enums/IntEnums types for Gino & Pydantic

  2. Added UUID type

  3. Added key schema_global in create_models method (by default schema_global = True). If you set schema_global=False schema if it exists in ddl will be defined for each table (model) in table args. This way you can have differen schemas per model (table). By default schema_global=True - this mean for all table only one schema and it is defined in db = Gino(schema="prefix--schema-name").

  4. If column is a primary key (primary_key=True) nullable argument not showed, because primary keys always are not null.

  5. To cli was added flag ‘–no-global-schema’ to set schema in table_args.

v0.4.1

  1. Added correct work with table names contains multiple ‘-’

v0.4.0

  1. Added generation for Pydantic models from ddl

  2. Main method create_gino_models renamed to create_models

v0.3.0

  1. Generated Index for ‘index’ statement in table_args (not unique constrait as previously)

  2. Fix issue with column size as tuple (4,2)

v0.2.0

  1. Valid generating columns in models: autoincrement, default, type, arrays, unique, primary key and etc.

  2. Added creating table_args for indexes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

omymodels-0.8.0.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

omymodels-0.8.0-py3-none-any.whl (25.1 kB view details)

Uploaded Python 3

File details

Details for the file omymodels-0.8.0.tar.gz.

File metadata

  • Download URL: omymodels-0.8.0.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.7 Darwin/19.6.0

File hashes

Hashes for omymodels-0.8.0.tar.gz
Algorithm Hash digest
SHA256 21221aa6cadbfbce5ff479f97fbbf03c2ebc55b572e8c3eec0c34e2f5ce70d66
MD5 d6969f8b144bc26a2d6115ad461b3db7
BLAKE2b-256 adaeb1c00fe963cd0c4631d863aa17ad9245e612c59ac65477e4abb2e209ec93

See more details on using hashes here.

File details

Details for the file omymodels-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: omymodels-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 25.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.7 Darwin/19.6.0

File hashes

Hashes for omymodels-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e6fdc2194764e1d1e55b45664dac7ab8a706060df104ca84f5448572440dd0e1
MD5 d186b425b2f00281afb4927b34c6edac
BLAKE2b-256 44873004d98acf74eaf483f8ca0cc9f80470d8bfc2b59b6dfb3d04c24a21590b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page