Skip to main content

OncodriveCLUST

Project description

OncodriveCLUST is a method aimed to identify genes whose mutations are biased towards a large spatial clustering. This method is designed to exploit the feature that mutations in cancer genes, especially oncogenes, often cluster in particular positions of the protein. We consider this as a sign that mutations in these regions change the function of these proteins in a manner that provides an adaptive advantage to cancer cells and consequently are positively selected during clonal evolution of tumours, and this property can thus be used to nominate novel candidate driver genes.

The method does not assume that the baseline mutation probability is homogeneous across all gene positions but it creates a background model using silent mutations. Coding silent mutations are supposed to be under no positive selection and may reflect the baseline clustering of somatic mutations. Given recent evidences of non-random mutation processes along the genome, the assumption of homogenous mutation probabilities is likely an oversimplication introducing bias in the detection of meaningful events.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oncodriveclust-1.0.0.tar.gz (11.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page