oneflow tools
Project description
OneUtils
A collection of useful tools for oneflow
Installation
pip install one-utils==0.0.2
Usage
- Weight Transfer
from one_utils import convert_torch_to_flow
model = model()
torch_weight = "path/to/pytorch_pretrained_weight.pth"
save_path = "path/to/save"
convert_torch_to_flow(model, torch_weight_path, save_path)
- Eval Pytorch Model Acc on ImageNet
from one_utils import eval_torch_acc
model = model()
data_path = "path/to/imagenet/val"
eval_torch_acc(model, data_path, n_gpu_use=1)
- Eval OneFlow Model Acc on ImageNet
from one_utils import eval_flow_acc
import multiprocessing as mp
mp.set_start_method("spawn")
model = model()
data_path = "path/to/imagenet/val"
eval_flow_acc(model, data_path)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
one-utils-0.0.3.tar.gz
(3.6 kB
view details)
File details
Details for the file one-utils-0.0.3.tar.gz
.
File metadata
- Download URL: one-utils-0.0.3.tar.gz
- Upload date:
- Size: 3.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d0fd1d5ff995f6d9596f805fcbb37ab4f0123bca1b811c2d060919bd5e75462a |
|
MD5 | f93de19f39aa3d24b05aff553913c994 |
|
BLAKE2b-256 | d1680c853678439ca7156a1f78c167f56095e0e333ef007f80aaa6415da57cb1 |