Skip to main content

Static and Dynamic classification tool.

Project description

Oneat

PyPI version

This project provides static and action classification networks for LSTM based networks to recoganize cell events such as division, apoptosis, cell rearrangement for various imaging modalities.

Installation & Usage

Installation

This package can be installed by

pip install --user oneat

additionally ensure that your installed tensorflow version is not over 2.3.4

If you are building this from the source, clone the repository and install via

git clone https://github.com/Kapoorlabs-CAPED/CAPED-AI-oneat/

cd CAPED-AI-oneat

pip install --user -e .

# or, to install in editable mode AND grab all of the developer tools
# (this is required if you want to contribute code back to NapaTrackMater)
pip install --user -r requirements.txt

Pipenv install

Pipenv allows you to install dependencies in a virtual environment.

# install pipenv if you don't already have it installed
pip install --user pipenv

# clone the repository and sync the dependencies
git clone https://github.com/Kapoorlabs-CAPED/CAPED-AI-oneat/
cd CAPED-AI-oneat
pipenv sync

# make the current package available
pipenv run python setup.py develop

# you can run the example notebooks by starting the jupyter notebook inside the virtual env
pipenv run jupyter notebook

Examples

oneat comes with different options to combine segmentation with classification or to just use classification independently of any segmentation during the model prediction step. We summarize this in the table below:

Example Dataset DataSet Trained Model Notebook Code Heat Map Csv output Visualization Notebook
Example timelapse Oneat model Colab Notebook Heat Map Csv File Napari notebook
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()

Troubleshooting & Support

  • The image.sc forum is the best place to start getting help and support. Make sure to use the tag oneat, since we are monitoring all questions with this tag.
  • If you have technical questions or found a bug, feel free to open an issue.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oneat-2.5.0.tar.gz (77.1 kB view details)

Uploaded Source

Built Distribution

oneat-2.5.0-py3-none-any.whl (86.3 kB view details)

Uploaded Python 3

File details

Details for the file oneat-2.5.0.tar.gz.

File metadata

  • Download URL: oneat-2.5.0.tar.gz
  • Upload date:
  • Size: 77.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0

File hashes

Hashes for oneat-2.5.0.tar.gz
Algorithm Hash digest
SHA256 05627a3e8e146af7ce82877fbf9e1e261b27219a9c0332767632b56eebf6a767
MD5 2caa25af7641c725bee9fd207771afbd
BLAKE2b-256 42d307fd0046ff893034640eb03b3ff898556ba3ffcc0d593143ef1b34573ec0

See more details on using hashes here.

File details

Details for the file oneat-2.5.0-py3-none-any.whl.

File metadata

  • Download URL: oneat-2.5.0-py3-none-any.whl
  • Upload date:
  • Size: 86.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0

File hashes

Hashes for oneat-2.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 646a8b4d6c9e63dcf35c25ca42b63cd4f287aad5b553d4c045cef5c9f518e8d1
MD5 353cf85129aac1b030930a9d027b7e4a
BLAKE2b-256 d8c7a83b948e36bab4e21db0409fc1ff2aa1712b216d9696e65b47d4112050f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page