Skip to main content

Static and Dynamic classification tool.

Project description

Oneat

PyPI version

This project provides static and action classification networks for LSTM based networks to recoganize cell events such as division, apoptosis, cell rearrangement for various imaging modalities.

Installation & Usage

Installation

This package can be installed by

pip install --user oneat

additionally ensure that your installed tensorflow version is not over 2.3.4

If you are building this from the source, clone the repository and install via

git clone https://github.com/Kapoorlabs-CAPED/CAPED-AI-oneat/

cd CAPED-AI-oneat

pip install --user -e .

# or, to install in editable mode AND grab all of the developer tools
# (this is required if you want to contribute code back to NapaTrackMater)
pip install --user -r requirements.txt

Pipenv install

Pipenv allows you to install dependencies in a virtual environment.

# install pipenv if you don't already have it installed
pip install --user pipenv

# clone the repository and sync the dependencies
git clone https://github.com/Kapoorlabs-CAPED/CAPED-AI-oneat/
cd CAPED-AI-oneat
pipenv sync

# make the current package available
pipenv run python setup.py develop

# you can run the example notebooks by starting the jupyter notebook inside the virtual env
pipenv run jupyter notebook

Examples

oneat comes with different options to combine segmentation with classification or to just use classification independently of any segmentation during the model prediction step. We summarize this in the table below:

Example Dataset DataSet Trained Model Notebook Code Heat Map Csv output Visualization Notebook
Example timelapse Oneat model Colab Notebook Heat Map Csv File Napari notebook
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()

Troubleshooting & Support

  • The image.sc forum is the best place to start getting help and support. Make sure to use the tag oneat, since we are monitoring all questions with this tag.
  • If you have technical questions or found a bug, feel free to open an issue.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oneat-2.5.2.tar.gz (77.0 kB view details)

Uploaded Source

Built Distribution

oneat-2.5.2-py3-none-any.whl (86.3 kB view details)

Uploaded Python 3

File details

Details for the file oneat-2.5.2.tar.gz.

File metadata

  • Download URL: oneat-2.5.2.tar.gz
  • Upload date:
  • Size: 77.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0

File hashes

Hashes for oneat-2.5.2.tar.gz
Algorithm Hash digest
SHA256 4142665fd617e4d3d21b776a1e36879438893943d7c8e9ce665459ce95a63921
MD5 19321af15fcb15896e274373f427e4fe
BLAKE2b-256 cdae8b5626fe7501b8848221584448af68a8c03636f1c46794d664cc43b1edf5

See more details on using hashes here.

File details

Details for the file oneat-2.5.2-py3-none-any.whl.

File metadata

  • Download URL: oneat-2.5.2-py3-none-any.whl
  • Upload date:
  • Size: 86.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0

File hashes

Hashes for oneat-2.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2d3f255740506319ece7c53a4b6abe053d2d15a09901de25e69c1eb5b3c7c8bc
MD5 e78b739a3c882c6b19af5fb6897ab7cf
BLAKE2b-256 1fad2b63924525aa47b1a581a029104f36eb589c793979d460c3fdee75fd2ea9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page