Skip to main content

Static and Dynamic classification tool.

Project description

Oneat

PyPI version

This project provides static and action classification networks for LSTM based networks to recoganize cell events such as division, apoptosis, cell rearrangement for various imaging modalities.

Installation & Usage

Installation

This package can be installed by

pip install --user oneat

additionally ensure that your installed tensorflow version is not over 2.3.4

If you are building this from the source, clone the repository and install via

git clone https://github.com/Kapoorlabs-CAPED/CAPED-AI-oneat/

cd CAPED-AI-oneat

pip install --user -e .

# or, to install in editable mode AND grab all of the developer tools
# (this is required if you want to contribute code back to NapaTrackMater)
pip install --user -r requirements.txt

Pipenv install

Pipenv allows you to install dependencies in a virtual environment.

# install pipenv if you don't already have it installed
pip install --user pipenv

# clone the repository and sync the dependencies
git clone https://github.com/Kapoorlabs-CAPED/CAPED-AI-oneat/
cd CAPED-AI-oneat
pipenv sync

# make the current package available
pipenv run python setup.py develop

# you can run the example notebooks by starting the jupyter notebook inside the virtual env
pipenv run jupyter notebook

Examples

oneat comes with different options to combine segmentation with classification or to just use classification independently of any segmentation during the model prediction step. We summarize this in the table below:

Example Dataset DataSet Trained Model Notebook Code Heat Map Csv output Visualization Notebook
Example timelapse Oneat model Colab Notebook Heat Map Csv File Napari notebook
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()
Example timelapse Oneat model Colab Notebook Heat Map Csv File [Napari notebook] ()

Troubleshooting & Support

  • The image.sc forum is the best place to start getting help and support. Make sure to use the tag oneat, since we are monitoring all questions with this tag.
  • If you have technical questions or found a bug, feel free to open an issue.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oneat-2.5.4.tar.gz (77.2 kB view details)

Uploaded Source

Built Distribution

oneat-2.5.4-py3-none-any.whl (86.4 kB view details)

Uploaded Python 3

File details

Details for the file oneat-2.5.4.tar.gz.

File metadata

  • Download URL: oneat-2.5.4.tar.gz
  • Upload date:
  • Size: 77.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0

File hashes

Hashes for oneat-2.5.4.tar.gz
Algorithm Hash digest
SHA256 0420f1eb82f78ec0b7acf63405ae6d606baad493361fe91111facdcb6df007bb
MD5 e3778b4ac61c0b0f018e2b71ccf5f63c
BLAKE2b-256 e8836e5efc30939a84cdb9e00929144167a148e18006de19a66cd4123d296884

See more details on using hashes here.

File details

Details for the file oneat-2.5.4-py3-none-any.whl.

File metadata

  • Download URL: oneat-2.5.4-py3-none-any.whl
  • Upload date:
  • Size: 86.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0

File hashes

Hashes for oneat-2.5.4-py3-none-any.whl
Algorithm Hash digest
SHA256 457ce2113a17c3d7ccc53762abdd8c228c35e8f92c18f34f39595dcd7e2d29e8
MD5 0f38e950c4518b33459f11fbd2ba947c
BLAKE2b-256 089ab1d9958daa803166ae2c71589162459b0fd4e13ce5f0f7e851c27777fc22

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page