Skip to main content

OntoNotes Normal Form Parser

Project description

Introduction

onf-parser is a lightweight pure Python library for parsing the OntoNotes Normal Form format (.onf – cf. section 6.3).

Installation

Note that Python >=3.7 is required due to our dependency on dataclasses.

pip install onf-parser

Usage

There are three top-level functions:

from onf_parser import parse_files, parse_file, parse_file_string
# read a single file
sections = parse_file('ontonotes/some/file.onf')
# or parse a raw string
sections = parse_file_string(s)
# read all .onf files in a single directory
files = parse_file('ontonotes/')

For each file, a list of Section objects (which correspond to documents for the purposes of annotation) will be available:

for filepath, sections in files:
    for section in sections:
        coref_chains = section.chains
        for chain in coref_chains:
            print(chain.type)
            print(chain.id)
            print(chain.mentions)
            for mention in chain.mentions:
                print(mention.sentence_id)
                print(mention.tokens)
        for sentence in section.sentences:
            print(sentence.plain_sentence)
            print(sentence.plain_sentence.string)

            print(sentence.treebanked_sentence)
            print(sentence.treebanked_sentence.string)
            print(sentence.treebanked_sentence.tokens)

            print(sentence.speaker_information)
            print(sentence.speaker_information.name)
            print(sentence.speaker_information.start_time)
            print(sentence.speaker_information.stop_time)

            print(sentence.tree)
            print(sentence.tree.tree_string)

            print(sentence.leaves)
            for leaf in sentence.leaves:
                print(leaf.token)
                print(leaf.token_id)

                # NER
                print(leaf.name)
                print(leaf.name.type)
                print(leaf.name.token_id_range)
                print(leaf.name.tokens)

                # Coreference
                print(leaf.coref)
                print(leaf.coref.type)
                print(leaf.coref.token_id_range)
                print(leaf.coref.tokens)

                # WordNet sense
                print(leaf.sense)
                print(leaf.sense.label)

                # PropBank
                print(leaf.prop.label)
                print(leaf.prop)
                for arg_label, arg_spans in leaf.prop.args.items():
                    print(arg_label)
                    for arg_span in arg_spans:
                        print(arg_span)

See model classes for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

onf_parser-0.2.1-py2.py3-none-any.whl (8.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file onf_parser-0.2.1-py2.py3-none-any.whl.

File metadata

  • Download URL: onf_parser-0.2.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for onf_parser-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 37d667787f295a86f200da5d805b21a8b8c1ba679a9a2b9f5a2630e908216682
MD5 5aa2c46b8c6621df727a32aa17364dd6
BLAKE2b-256 900f6838e6ab2b6e85f17a8636892fba10d8afaf7a41dd8bb0acd6814c926524

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page