Skip to main content

OntoNotes Normal Form Parser

Project description

Introduction

onf-parser is a lightweight pure Python library for parsing the OntoNotes Normal Form format (.onf – cf. section 6.3).

Installation

Note that Python >=3.7 is required due to our dependency on dataclasses.

pip install onf-parser

Usage

There are three top-level functions:

from onf_parser import parse_files, parse_file, parse_file_string
# read a single file
sections = parse_file('ontonotes/some/file.onf')
# or parse a raw string
sections = parse_file_string(s)
# read all .onf files in a single directory
files = parse_file('ontonotes/')

For each file, a list of Section objects (which correspond to documents for the purposes of annotation) will be available:

for filepath, sections in files:
    for section in sections:
        coref_chains = section.chains
        for chain in coref_chains:
            print(chain.type)
            print(chain.id)
            print(chain.mentions)
            for mention in chain.mentions:
                print(mention.sentence_id)
                print(mention.tokens)
        for sentence in section.sentences:
            print(sentence.plain_sentence)
            print(sentence.plain_sentence.string)

            print(sentence.treebanked_sentence)
            print(sentence.treebanked_sentence.string)
            print(sentence.treebanked_sentence.tokens)

            print(sentence.speaker_information)
            print(sentence.speaker_information.name)
            print(sentence.speaker_information.start_time)
            print(sentence.speaker_information.stop_time)

            print(sentence.tree)
            print(sentence.tree.tree_string)

            print(sentence.leaves)
            for leaf in sentence.leaves:
                print(leaf.token)
                print(leaf.token_id)

                # NER
                print(leaf.name)
                print(leaf.name.type)
                print(leaf.name.token_id_range)
                print(leaf.name.tokens)

                # Coreference
                print(leaf.coref)
                print(leaf.coref.type)
                print(leaf.coref.token_id_range)
                print(leaf.coref.tokens)

                # WordNet sense
                print(leaf.sense)
                print(leaf.sense.label)

                # PropBank
                print(leaf.prop.label)
                print(leaf.prop)
                for arg_label, arg_spans in leaf.prop.args.items():
                    print(arg_label)
                    for arg_span in arg_spans:
                        print(arg_span)

See model classes for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

onf_parser-0.2.0-py2.py3-none-any.whl (8.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file onf_parser-0.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: onf_parser-0.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for onf_parser-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f94ec472f205c634f12940833ec1f581380f4e17569888d93a53cedebb8dbc37
MD5 3a1cd0d03503c54e5a02d8ed2a43a981
BLAKE2b-256 23ec08549d5a2601c0ec815a22d9a782dff44bf304b656bdc2d73af52a67a909

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page