Skip to main content

"Online mining triplet losses for Pytorch"

Project description

online_triplet_loss

PyTorch conversion of the excellent post on the same topic in Tensorflow. Simply an implementation of a triple loss with online mining of candidate triplets used in semi-supervised learning.

Install

pip install online_triplet_loss

Then import with: from online_triplet_loss.losses import *

PS: Requires Pytorch version 1.1.0 or above to use.

How to use

In these examples I use a really large margin, since the embedding space is so small. A more realistic margins seems to be between 0.1 and 2.0

from torch import nn
import torch

model = nn.Embedding(10, 10)
#from online_triplet_loss.losses import *
labels = torch.randint(high=10, size=(5,)) # our five labels

embeddings = model(labels)
print('Labels:', labels)
print('Embeddings:', embeddings)
loss = batch_hard_triplet_loss(labels, embeddings, margin=100)
print('Loss:', loss)
loss.backward()
Labels: tensor([6, 1, 3, 6, 6])
Embeddings: tensor([[-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500],
        [ 1.0757, -0.8420, -0.7630, -0.0746,  1.1545,  0.4017,  0.5587,  1.7947,
          0.1992, -2.2288],
        [ 0.2646,  1.2383,  0.1949,  0.5743, -0.8460, -0.9929, -2.0350,  0.2095,
          0.2129, -0.4855],
        [-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500],
        [-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500]], grad_fn=<EmbeddingBackward>)
Loss: tensor(95.1271, grad_fn=<MeanBackward0>)
#from online_triplet_loss.losses import *
embeddings = model(labels)
print('Labels:', labels)
print('Embeddings:', embeddings)
loss, fraction_pos = batch_all_triplet_loss(labels, embeddings, squared=False, margin=100)
print('Loss:', loss)
loss.backward()
Labels: tensor([6, 1, 3, 6, 6])
Embeddings: tensor([[-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500],
        [ 1.0757, -0.8420, -0.7630, -0.0746,  1.1545,  0.4017,  0.5587,  1.7947,
          0.1992, -2.2288],
        [ 0.2646,  1.2383,  0.1949,  0.5743, -0.8460, -0.9929, -2.0350,  0.2095,
          0.2129, -0.4855],
        [-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500],
        [-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500]], grad_fn=<EmbeddingBackward>)
tensor(94.9947, grad_fn=<DivBackward0>) tensor(1.)
Loss: tensor(94.9947, grad_fn=<DivBackward0>)

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

online_triplet_loss-0.0.6.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

online_triplet_loss-0.0.6-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file online_triplet_loss-0.0.6.tar.gz.

File metadata

  • Download URL: online_triplet_loss-0.0.6.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0.post20200710 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for online_triplet_loss-0.0.6.tar.gz
Algorithm Hash digest
SHA256 2849bea4470ef07302fd52d1ddb0bbb488a5e999d7508cece18212cbc7543357
MD5 1975239c7e63200938e3aa5d5cd4a085
BLAKE2b-256 9ae8ef6a783743a63286ea1d3ac08f250b3d3a9e2ef25b0fee31d94af24997e2

See more details on using hashes here.

File details

Details for the file online_triplet_loss-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: online_triplet_loss-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0.post20200710 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for online_triplet_loss-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 d0226188833930ddfc0c27fe4f463fd0da91e2ab37b93fa334ae3bb5b4180e5f
MD5 4c6ea5a42c0e03ac70d530cf49699d41
BLAKE2b-256 b175501a4cd77f518d0988e641831fa8a225a48513b6217a731aac202bc56ab4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page