Skip to main content

"Online mining triplet losses for Pytorch"

Project description

online_triplet_loss

PyTorch conversion of the excellent post on the same topic in Tensorflow. Simply an implementation of a triple loss with online mining of candidate triplets used in semi-supervised learning.

Install

pip install online_triplet_loss

Then import with: from online_triplet_loss.losses import *

PS: Requires Pytorch version 1.1.0 or above to use.

How to use

In these examples I use a really large margin, since the embedding space is so small. A more realistic margins seems to be between 0.1 and 2.0

from torch import nn
import torch

model = nn.Embedding(10, 10)
#from online_triplet_loss.losses import *
labels = torch.randint(high=10, size=(5,)) # our five labels

embeddings = model(labels)
print('Labels:', labels)
print('Embeddings:', embeddings)
loss = batch_hard_triplet_loss(labels, embeddings, margin=100)
print('Loss:', loss)
loss.backward()
Labels: tensor([6, 1, 3, 6, 6])
Embeddings: tensor([[-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500],
        [ 1.0757, -0.8420, -0.7630, -0.0746,  1.1545,  0.4017,  0.5587,  1.7947,
          0.1992, -2.2288],
        [ 0.2646,  1.2383,  0.1949,  0.5743, -0.8460, -0.9929, -2.0350,  0.2095,
          0.2129, -0.4855],
        [-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500],
        [-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500]], grad_fn=<EmbeddingBackward>)
Loss: tensor(95.1271, grad_fn=<MeanBackward0>)
#from online_triplet_loss.losses import *
embeddings = model(labels)
print('Labels:', labels)
print('Embeddings:', embeddings)
loss, fraction_pos = batch_all_triplet_loss(labels, embeddings, squared=False, margin=100)
print('Loss:', loss)
loss.backward()
Labels: tensor([6, 1, 3, 6, 6])
Embeddings: tensor([[-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500],
        [ 1.0757, -0.8420, -0.7630, -0.0746,  1.1545,  0.4017,  0.5587,  1.7947,
          0.1992, -2.2288],
        [ 0.2646,  1.2383,  0.1949,  0.5743, -0.8460, -0.9929, -2.0350,  0.2095,
          0.2129, -0.4855],
        [-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500],
        [-1.1335,  0.3364, -3.0174, -0.8732, -0.9301,  1.3619,  0.3746,  0.0457,
          0.0180, -0.4500]], grad_fn=<EmbeddingBackward>)
tensor(94.9947, grad_fn=<DivBackward0>) tensor(1.)
Loss: tensor(94.9947, grad_fn=<DivBackward0>)

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

online_triplet_loss-0.0.6.tar.gz (5.2 kB view hashes)

Uploaded Source

Built Distribution

online_triplet_loss-0.0.6-py3-none-any.whl (6.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page