Skip to main content

Online Neural Network

Project description

Online Neural Network (ONN)

This is a Pytorch implementation of the Online Deep Learning: Learning Deep Neural Networks on the Fly paper. This algorithm contains a new backpropagation approach called Hedge Backpropagation and it is useful for online learning. In this algorithm you model a overnetwork architeture and the algorithm will try to turn on or turn off some of the hidden layers automatically. This algorithm uses the first hidden layer to train/predict but if it is going bad it starts to use another layers automatically. For more informations read the paper in the 'References' section.

Installing

pip install onn

How to use

#Importing Library
import numpy as np
from onn.OnlineNeuralNetwork import ONN

#Starting a neural network with feature size of 2, hidden layers expansible until 5, number of neuron per hidden layer = 10 #and two classes.
onn_network = ONN(features_size=2, max_num_hidden_layers=5, qtd_neuron_per_hidden_layer=10, n_classes=2)

#Do a partial training
onn_network.partial_fit(np.asarray([[0.1, 0.2]]), np.asarray([0]))
onn_network.partial_fit(np.asarray([[0.8, 0.5]]), np.asarray([1]))

#Predict classes
predictions = onn_network.predict(np.asarray([[0.1, 0.2], [0.8, 0.5]]))

Predictions -- array([1, 0])

New features

  • The algortihm works with batch now. (It is not recommended because this is an online approach. It is useful for experimentation.)
  • The algorithm can use CUDA if available. (If the network is very small, it is not recommended. The CPU will process more fast.)

Non-linear Contextual Bandit Algorithm (ONN_THS)

The ONN_THS acts like a non-linear contextual bandit (a reinforcement learning algorithm). This algorithm works with the non-linear exploitation factor (ONN) plus an exploration factor provided by Thompson Sampling algorithm. The ONN_THS works with 'select' and 'reward' actions. For more detailed examples, please look at the jupyter notebook file in this repository.

The great thing about this algorithm is that it can be used in an online manner and it has a non-linear exploitation. This algorithm can learn different kind of data in a reinforcement learning way.

How to use

#Importing Library
import numpy as np
from onn.OnlineNeuralNetwork import ONN_THS

#Starting a neural network with feature size of 2, hidden layers expansible until 5, number of neuron per hidden layer = 10 #and two classes.
onn_network = ONN_THS(features_size=2, max_num_hidden_layers=5, qtd_neuron_per_hidden_layer=10, n_classes=2)

#Select an action
arm_selected, exploration_factor = onn_network.predict(np.asarray([[0.1, 0.2]]))

#Reward an action
onn_network.partial_fit(np.asarray([[0.1, 0.2]]), np.asarray([arm_selected]), exploration_factor)

Contributors

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onn-0.1.6.tar.gz (4.4 kB view details)

Uploaded Source

File details

Details for the file onn-0.1.6.tar.gz.

File metadata

  • Download URL: onn-0.1.6.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.8

File hashes

Hashes for onn-0.1.6.tar.gz
Algorithm Hash digest
SHA256 bdd7ab3877a3291c824fde3204a1708162ffc2002cfbd6f5cf77707dc00eff2a
MD5 89674d7edff88aa6fd4b0e63d9e104e6
BLAKE2b-256 1686e8de199cbe599a30327ced0ef61e6cdfaf1db91655df14da8cf79f47aed5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page