Skip to main content

onnx-divider

Project description

onnigiri

onnx-divider

The purpose of this package is to create subgraphs by partitioning computational graphs in order to facilitate the development of applications.

One of the problems in developing applications using deep learning models is that the DL model is not applicable by itself. For example, they may be have unnecessary nodes and some nodes are not supported some DL tools. This tool enable us to edit an onnx model freely and easily.

Installation

From PyPI:

$ pip3 install onnigiri

From Dockerhub

$ docker pull idein/onnigiri:20231114

Usage

SSD

$ onnigiri ssd-10.onnx -o ssd-10-main.onnx --from image --to Transpose_472 Transpose_661
$ onnigiri ssd-10.onnx -o ssd-10-post.onnx --from Transpose_472 Transpose_661 --to bboxes labels scores

With docker:

$ docker run --rm -it -u $UID:$GID -v $(pwd):/work idein/onnigiri:20221014 ssd-10.onnx -o ssd-10-main.onnx --from image --to Transpose_472 Transpose_661
$ docker run --rm -it -u $UID:$GID -v $(pwd):/work idein/onnigiri:20221014 ssd-10.onnx -o ssd-10-post.onnx  --from Transpose_472 Transpose_661 --to bboxes labels scores

UltraFace

$ onnigiri version-RFB-640.onnx -o version-RFB-640-main.onnx --from input --to 460 scores
$ onnigiri version-RFB-640.onnx -o version-RFB-640-post.onnx --from 460 --to boxes

tiny-yolov3

$ onnigiri tiny-yolov3-11.onnx --fix-input-shape 'input_1' '1,3,256,256' 'image_shape' '1,2' -o tiny-yolov3-11-main.onnx --from input_1 --to 'TFNodes/yolo_evaluation_layer_1/Reshape_3:0' 'model_1/leaky_re_lu_10/LeakyRelu:0' 'model_1/leaky_re_lu_5/LeakyRelu:0'
$ onnigiri tiny-yolov3-11.onnx --fix-input-shape 'input_1' '1,3,256,256' 'image_shape' '1,2' -o tiny-yolov3-11-post.onnx --from image_shape 'TFNodes/yolo_evaluation_layer_1/Reshape_3:0' 'model_1/leaky_re_lu_10/LeakyRelu:0' 'model_1/leaky_re_lu_5/LeakyRelu:0' --to 'yolonms_layer_1' 'yolonms_layer_1:1' 'yolonms_layer_1:2'

Q&A

  • How to get the name of values?

Use Netron.

  • Why is the extracted subgraph different from the original subgraph?

onnigiri apply onnx-simplifier before extraction. You can disable the graph optimization by the onnx-simplifier using the --no-optimization option.

Development Guide

$ poetry install

Build docker image

$ nix build '.#dockerimage' -o image
$ docker load < ./image

Related project

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnigiri-0.4.0.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

onnigiri-0.4.0-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file onnigiri-0.4.0.tar.gz.

File metadata

  • Download URL: onnigiri-0.4.0.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.0 CPython/3.9.18 Linux/5.15.0-1039-aws

File hashes

Hashes for onnigiri-0.4.0.tar.gz
Algorithm Hash digest
SHA256 bcb5f67d23d094e0698a454151e83fb1473c211a8253fc76571ea58c97ee226b
MD5 18dc308a16c8e047eb1743fd0ced9ed3
BLAKE2b-256 d56eb740e671073dbd62aee68cfa845fe1295e36f9993f3290de7bab703a0485

See more details on using hashes here.

File details

Details for the file onnigiri-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: onnigiri-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 4.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.0 CPython/3.9.18 Linux/5.15.0-1039-aws

File hashes

Hashes for onnigiri-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8e29eb2ef08346932ca6e4c24eff2bd4463f8985f42c08b6501af1bfb1b13445
MD5 82f07b70571786464060dffebf580f44
BLAKE2b-256 ba3e511cc6e167b0ec3cebdfd1789ce9719dafb3f53fee595c35bfecd3f6109b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page